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Abstract. This paper describes a method of estimating the pose of a
human in bed only from a single depth image. Such estimation is use-
ful for robotic monitoring of the elderly and the disabled, where their
lying posture may indicate illness. While it can address privacy and illu-
mination issues, depth images make the pose estimation problem more
challenging. We solve this problem by generating training images with
cloth simulation and deep keypoint estimation. We evaluated the effec-
tiveness of the dataset using synthetic and real test images. We also show
that adding a small number of real training data improves the results.

1 Introduction

Lifestyle support is one of the promising application domains of robotic tech-
nologies. Several home service robots (e.g., Toyota’s Human Support Robot [33])
have been developed and are expected to work at home in the near future. One
of the tasks of such robots is monitoring, which is to live with and take care of
the elderly or the disabled at home or in care houses, by watching their states
frequently. There are many ways of monitoring, for example, activity monitoring
[18, 20], health monitoring using dedicated devices [25], and contactless fatigue
estimation [12, 11].

Posture is an informative cue of the state of a person, and there is a re-
lationship between sleeping posture and health [3]. Unusual postures, such as
crouching and lying with pressing the stomach, might also indicate abnormal
health conditions. In robotic monitoring scenarios, persons to monitor are often
sleeping in the bed, and the body is mostly or partially occluded by cloth-like
objects such as blankets.

Pose estimation techniques can be used for identifying both usual and unusual
postures. Image-based pose estimation is a popular research topic in computer
vision, and many deep learning-based methods have been developed (e.g., [5]).
Some of them use a depth image as input [28]). These methods work well when
taking usual postures like standing and walking, but not for unusual postures
like crouching or heavily occluded cases.

The use of depth images effectively addresses illumination variations and pri-
vacy issues. However, since depth images have less detailed features than RGB
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images, estimating unusual postures only from depth images is still challenging.
Annotating depth images is also a tedious task. We [22, 21] previously proposed
a semantic segmentation method of body part labels, which utilizes a large syn-
thetic dataset. However, their method does not work for in-bed pose estimation.
Then, We [23] extended this work to generate a depth image dataset of lying
persons under blankets using a cloth simulation technique. However, this method
works only for synthetic test data and still requires post-processing to convert
segmentation results to the posture.

This paper further extends our previous attempts in the following two points.
First, we generate real training data and rigorously analyze the effect of utilizing
a combined synthetic and real dataset. Second, we adopt joint location estima-
tion instead of body part segmentation to make it easier to estimate poses and
generate a real dataset.

The rest of the paper is organized as follows. Section 2 describes related
work. Section 3 describes the steps for generating a synthetic dataset using cloth
simulation. Section 4 describes the experimental results using synthetic datasets.
Section 5 describes the experimental results using a real dataset and analyzes
the effect of additional real data for training. Section 6 concludes the paper and
discusses future work.

2 Related Work

2.1 RGB Image-based human pose estimation

Human pose estimation has been one of the fundamental problems in computer
vision. A large degrees of freedom of human structure and frequent occlusions
sometimes make the pose estimation a challenging task. For a robust and reli-
able estimation, various methods have been proposed [19, 16]. Thanks to recent
advances in deep learning techniques, many image-based methods have been pro-
posed, for example, joint position estimation [5, 30] and part segmentation [24].
The joint position estimation task outputs the position of the keypoints of each
joint, and the part segmentation outputs pixel-wise classification of a person’s
body parts, such as head, arms, and legs, from an image.

Toshev et al. proposed a method for estimating the joint positions of a person
in a color image [30] by using the FLIC dataset [26] and Alexnet[13]. Oliveira et
al. proposed a method that uses the PASCAL Parts dataset [6], which includes
pairs of color images and human part labels, for training a Fully Convolutional
Network (FCN) [17] for part segmentation.

Liu and Ostadabbas [14] developed a method of image-based in-bed posture
classification using a combination of HOG and SVM. They also developed a
system that utilizes infrared images with the convolutional pose machine [15].

Although image-based approaches can achieve high performance using a large
amount of training data, image-based methods tend to be sensitive to appearance
changes. They may also encounter privacy issues at home or in care houses. Using
depth images is one way to address them.
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2.2 Depth-based human pose estimation

Shotton et al. [28] developed a human pose estimation method using depth-based
features with a random forest classifier. In their method, the difference in depth
values between two points on the image is used as a feature value to classify to
which human body part each pixel belongs. The region of each part is obtained
from the pixel classification result, and then the joint locations are calculated.
Vasileiadis et al. [31] proposed a pose estimation method from depth images
using an articulated human model and a signed distance function. Although
these methods perform well, their applicability to heavily-occluded situations is
limited.

We proposed generating human depth images with pixel-wise body part la-
bels using computer graphics and motion capture techniques [22, 21]. We have
shown that a deep neural network trained with the generated images can rec-
ognize a variety of human poses in real scenes on the condition that the body
regions in the depth images are correctly extracted. We [23] extended this ap-
proach to pose estimation under cloth-like objects by adopting cloth simulation
technology to synthetic data generation. However, the method cannot obtain
enough accuracy when applied to real data.

2.3 Sensor-based pose estimation

Pressure sensors installed in a bed can get a pressure distribution of a person
lying on the bed. By analyzing the distribution (or pressure image), the lying
posture is estimated [9, 10, 32, 29]. Deep learning-based approaches have recently
been proposed to analyze pressure images. Davoodnia and Etemad [8] developed
a CNN-based method for recognizing the user identity and the posture class.
Clever et al. [7] developed a physics-based method to simulate human bodies
in a bed, generate synthetic pressure images, and train a neural network for
predicting human shape and posture. Although pressure image-based methods
can also be applied to humans under cloth-like objects or heavy occlusions, a
specialized bed or mattress is required.

3 Synthetic Dataset Generation

3.1 Outline of synthetic dataset generation

We use a computer graphics platform, Maya [1], for generating the dataset by
following our previous steps [22, 23] and by adopting keypoint detection instead
of body parts segmentation. Fig. 1 shows the outline of the data generation. We
first construct a model of a human (see Fig. 2) and cloth. The human model has
fourteen trackers (see Fig. 3) on its body so that the location of each joint can
be extracted.

We make two types of data. One is the depth image to simulate the obser-
vation by a depth sensor. This image is generated by visualizing the cloth and
rendering depth data. The depth values are normalized to [0, 1]. The other is a
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Fig. 1: Outline of dataset generation using computer graphics.

Fig. 2: Human model. Fig. 3: Joint trackers.

list of keypoint locations. Each pair of a depth and a labeled image is an element
of the generated dataset.

We use a human model generated based on [27]. There are fourteen body
joints: nose, neck, left/right wrists, left/right elbows, left/right shoulders, left/right
hips, left/right knees, left/right ankles. The model has a skeletal structure, and
its posture can be modified by specifying joint angles.

3.2 Cloth simulation

We use nCloth [2], the cloth simulation function of Maya, for simulating humans
covered by blankets. We use a fixed-sized cloth (150 [cm] × 150 [cm]) with 0 [cm]
thickness. An nCloth object is represented as a dynamic mesh, characterized by
parameters such as mass, friction, and stretch, compression, and bend resistance.
We tested various combinations of the parameters and chose the following: 1.0 for
the mass, 0.4 for the friction, and 0.4, 1.0, and 0.3 for the stretch, compression,
and bend resistance, respectively. For simulation, we place a cloth 50 [cm] above
the human body and make it freely fall while starting the dynamic simulation.
We stop the simulation and extract the cloth surface shape when the cloth
motion converges.
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Fig. 4: Examples of human postures with cloth in dataset.

Fig. 5: Network architecture for human pose estimation.

3.3 Dataset details

The camera is set on the ceiling, looking right downward from 250 [cm] above for
rendering. To make images of various lying orientations, we rotate the human
body with the cloth around the vertical axis at 5 [deg] intervals. The dataset
is generated with 67 human poses and 72 different angles. Fig. 4 shows the
examples of a human model with the cloth. The size of the images is scaled to
212 × 256. Keypoints are specified by their normalized pixel coordinate values,
where the upper-left corner is (0,0), and the bottom-right corner is (1,1). We
split the dataset into 4,248 and 576 for training and testing, respectively. We
also generated another dataset without the cloth for comparison purposes.

4 Exepriments with Synthetic Dataset

4.1 Training

Fig. 5 depicts the CNN-based network architecture used. The network takes a
single 256 × 212 × 1 depth image as input and outputs a 28-dimensional ten-
sor, which is composed of the locations of fourteen joint keypoints in the pixel
coordinates. The network is trained with two different datasets, with-cloth and
without-cloth, to examine the effect of cloth on the estimation accuracy. The
training condition is as follows: GPU: Nvidia Titan X, framework: TensorFlow,
optimizer: Adam, learning rate: 10−4, batch size: 32, epochs: 100.
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(a) input (b) output (W/O) (c) output (W) (d) ground truth

Fig. 6: Estimation results for synthetic data. (a) Input. (b) Output with the
model trained with the without-cloth (W/O) dataset. (c) Ouput with the model
trained with the with-cloth (W) dataset. (d) Ground truth.

4.2 Evaluation metrics

We use two evaluation metrics: Root Mean Squared Error (RMSE) and Per-
centage of Correct Keypoints (PCK) [4]. RMSE is a metric that indicates the
distance between the estimated and the ground truth keypoint locations, defined
by:

RMSE =

√√√√ 1

N

N∑
i=1

∥µi − µ̄i∥2, (1)

where N is the number of keypoints (i.e., fourteen), µi and µ̄i are the ground
truth and the estimated location of the ith keypoint, respectively.

PCK is a metric that indicates the percentage of correctly estimated key-
points, defined by:

PCK = CEK/N, (2)

CEK =
N∑
i=1

K,

{
K = 1,where

√
∥µi − µ̄i∥2 < ϵ

K = 0,where
√

∥µi − µ̄i∥2 ≥ ϵ
, (3)

where ϵ is the threshold to judge the correctness. A half of the diagonal length
of the ground-truth head bouding box is commonly used as the threshold; the
metric using that threshold is called PCKh@0.5.
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4.3 Experimental results

Fig. 6 shows the estimation results when the with-cloth test dataset is supplied
to the two models; one is trained with the without-cloth dataset and the other
with the with-cloth dataset. The latter exhibits better results than the former
and outputs results close to the ground truth even though the cloth occludes
most of the body surface. We also compare the models in terms of RMSE and
PCKh@0.5. The averaged metrics for the without-cloth model and the with-cloth
model are 16.58 [pix] and 4.55 [pix] in RMSE and 0.260 and 0.929 in PCKh@0.5,
respectively. These results show the effectiveness of the dataset generated with
cloth simulation.

5 Experiments wit Real Scene Dataset

5.1 Aquisition of real scene dataset

Fig. 7 shows an overview of the real scene experiment. The data for the real-
world evaluation was obtained by an Azure Kinect RGB-D sensor installed on
the ceiling. For the cloth, we used a curtain cloth with a thickness of 0.008 [cm].
A person lay on the floor and took various poses. We took a pair of images with
and without the cloth for a pose. We applied OpenPose v1.7.0 to the RGB images
taken without the cloth to obtain keypoints as ground truth. Since a raw depth
image includes many noise pixels, we preprocess the images so that only depth
data within the correct range (between 0 [m] and 2.45 [m] (camera height)) exist.
Fifty pairs of depth images were taken while a person was changing posture. We
scaled and cropped the captured images to 256 × 212 so that they have the
same angle of view and the image size as the synthetic images. The dataset
was then augmented by rotating the images by 360 [deg] with 5 [deg] intervals,
which provides 72 images for each posture. We have thus 3,600 images in total.
The images are split into 1,440 and 2,160 for training and testing. Fig. 8 shows
four example pairs of preprocessed depth images. We also modified the keypoint
locations of synthetic data so that they match those of OpenPose outputs.

5.2 Experimental results

Testing the models trained only with synthetic data Fig. 9 shows pose
estimation results for the model trained with the without-cloth synthetic dataset
tested against without-cloth real test data. The results look reasonable, although
some joints, such as wrists and ankles, suffer from significant errors. The averaged
metrics are 11.565 [pix] in RMSE and 0.464 in PCKh@0.5. Even though the
model is trained only with synthetic data, it can robustly estimate the pose
when a cloth does not cover the human body.

Fig. 10 shows pose estimation results for the model trained with the with-
cloth dataset tested against with-cloth real data. The averaged metrics are 25.622
[pix] in RMSE and 0.124 in PCKh@0.5. The estimation accuracy is very low,
possibly because the shape of the cloth is significantly different between synthetic
and real data.
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Fig. 7: Overview of human pose estimation experiments in real scene.

Fig. 8: Examples of preprocessed real scene depth image. Top row: data without
cloth, bottom row: data with cloth. Keypoints are superimposed as ground truth.

Training with both synthetic and real data The model trained only with
synthetic data cannot robustly estimate the human pose in with-cloth situations
due to the reality gap. On the other hand, obtaining lots of real data is costly, and
the variety of poses may be restricted. Combining synthetic and real data would
be a promising way of solving those issues. Thus, we investigate the effectiveness
of such a combination in the training data.

Fig. 11 shows the comparison results for the model without and with addi-
tional synthetic data for training. The former model uses only real data for five
poses, while the latter uses those data and additional synthetic data for 59 poses.
The figure shows that adding synthetic data improves the estimation accuracy
by supplementing the lack of pose variations. Fig. 12 shows the results with dif-
ferent numbers of additional real data. As the number of real data increases, the
estimation results are improved.
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(a) input (b) output (c) ground truth

Fig. 9: Estimation results in real scene (without-cloth). Training dataset: Syn-
thetic dataset without cloth. Test dataset: Real data without cloth.

(a) input (b) output (c) ground truth

Fig. 10: Estimation results in real scene (with cloth). Training dataset: Synthetic
dataset with cloth. Test dataset: Real data with cloth.

Table 1 summarizes the RMSEs and PCKs for various training datasets.
From the table, we can see that introducing or increasing the number of real
data in the training dataset improves the performance. For example, from lines
1 to 4, real data are effective compared to synthetic data, even if the number
of real data is relatively small; this is probably because the variation of inputs
is not very large in our current setting. On the other hand, from pairs of real
data only and real plus synthetic (lines 4 and 7, for example), synthetic data
are also useful when combined with real data. An interesting observation is that
the combination of a small number of real data and a large synthetic dataset
(line 5) shows comparable performance to a large number of real data (line 4);
the synthetic dataset seems to supplement the lack of pose variations in the real
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(a) input (b) real data only (c) real + synthetic (d) ground truth

Fig. 11: Estimation results of models with and without synthetic data against
the real test data.

data. This result suggests an approach to reducing the cost of generating a real
dataset by effectively utilizing synthetic data.

Table 1: RMSE and PCKh@0.5 for various training data.
No. Training Dataset RMSE PCKh@0.5

1 synthetic dataset only 26.976 0.167
2 real data only (5 poses) 15.773 0.508
3 real data only (10 poses) 13.225 0.636
4 real data only (20 poses) 8.570 0.789

5 real data (5 poses) + synthetic dataset 8.760 0.738
6 real data (10 poses) + synthetic dataset 7.729 0.800
7 real data (20 poses) + synthetic dataset 7.061 0.841

6 Conclusions and Discussion

This paper described a method of estimating the pose of humans under cloth-like
objects such as blankets. We use depth images to avoid sensitivity to illumination



Depth-based in-bed human pose estimation 11

(a) add 5 real poses (b) add 10 real poses (c) add 20 real poses (d) ground truth

Fig. 12: Estimation results of models with synthetic data and different numbers
of real data against the real test data with cloth.

conditions and privacy concerns. We need to have a large dataset for training
to adopt depth images for pose estimation. We thus utilize a cloth deformation
simulation for generating pairs of the depth image of a human under a blanket
and the list of joint locations. We showed the usefulness of cloth simulation-based
data generation for pose estimation using synthetic test data. However, using
only synthetic data for training is not enough for pose estimation in real scenes.
Therefore, we analyzed the effect of combining real and synthetic data. The
analysis shows that the combination is better than real data-only or synthetic
data-only cases. We also showed that a small number of real data combined with
a large synthetic dataset provides a good balance of the data generation cost and
the estimation performance.

Further improvements are needed to apply the proposed approach to real
application scenarios. It is necessary to increase the variety of synthetic data
to cope with a more variety of scenes. Possible ways to increase the variation
are: using human models of various body shapes and dimensions, using various
types of cloth objects with different cloth parameters such as thickness and
stiffness, and adding more postures. Several data augmentation techniques can
also be adopted. It is also necessary to develop a method of abnormal posture
detection, as our ultimate goal is to develop a monitoring robot that can detect
persons in physically critical situations. Therefore, mapping from a posture to
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a physical state will be necessary. Not a single posture data but a time series of
postures could be more informative for that purpose.
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19. Moeslund, T., Hilton, A., Krüger, V.: A survey of advances in vision-based human
motion capture and analysis. Computer Vision and Image Understanding 104,
90–126 (2006)

20. Mori, T., Tominaga, S., Noguchi, H., Shimoasaka, M., Fukui, R., Sato, T.: Behavior
prediction from trajectories in a house by estimating transition model using stay
points. In: Proceedings of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.
pp. 3419–3425 (2011)

21. Nishi, K., Demura, M., Miura, J., Oishi, S.: Use of thermal point cloud for thermal
comfort measurement and human pose estimation in robotic monitoring. In: Pro-
ceedings of 5th Int. Workshop on Assistive Computer Vision and Robotics (2017)

22. Nishi, K., Miura, J.: Generation of human depth images with body part labels for
complex human pose recognition. Pattern Recognition 71, 402–413 (2017)

23. Ochi, S., Miura, J.: Human pose recognition uder cloth-like objects from depth
images using a synthetic image dataset with cloth simulation. In: Proceedings of
2021 IEEE/SICE Int. Symp. on System Integration (2021)

24. Oliveira, G., Valada, A., Bollen, C., Burgard, W., Brox, T.: Deep learning for hu-
man part discovery in images. In: Proceedings of 2016 IEEE Int. Conf. on Robotics
and Automation (2016)

25. Pantelopoulos, A., Bourbakis, N.: A survey on wearable sensor-based systems for
health monitoring and prognosis. IEEE Trans. on Systems, Man, and Cybernetics
Part C: Applications and Reviews 40(1), 1–12 (2010)

26. Sapp, B., Taskar, B.: Modec: Multimodal decomposable models for human pose
estimation. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR) (2013)

27. Shinzaki, M., Iwashita, Y., Kurazume, R., Ogawara, K.: Gait-based person identi-
fication method using shaodow biometrics for robustness to changes in the walking
direction. In: Proceedings of 2015 IEEE Winter Conf. on Applications of Computer
Vision. pp. 670–677 (2015)

28. Shotton, J., Sharp, T., Kipman, A., Fitzgiboon, A., Finocchio, M., Blake, A.,
Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth
images. Communications of the ACM 56(1), 116–124 (2013)

29. Sun, Q., Gonzalez, E., Sun, Y.: On bed posture recognition with pressure sensor
array system. In: 2016 IEEE SENSORS (2016)

30. Toshev, Z., Szegedy, C.: Deeppose: Human pose estimation via deep neural net-
works. In: Proceedings of 2014 IEEE Conf. on Computer Vision and Pattern Recog-
nition. pp. 1653–1660 (2014)

31. Vasileiadis, M., Malassiotis, S., Giakoumis, D., Bouganis, C.S., Tzovaras, D.: Ro-
bust human pose tracking for realistic service robot applications. In: Proceedings
of the 5th Int. Workshop on Assistive Computer Vision and Robotics (2017)

32. Xu, X., Lin, F., Wang, A., Song, C., Hu, Y., Xu, W.: On-bed sleep posture recog-
nition based on body-earth mover’s distance. In: Proceedings of 2015 Biomedical
Circuits and Systems Conf. (2015)

33. Yamamoto, T., Terada, K., Ochiai, A., Saito, F., Asahara, A., Murase, K.: De-
velopment of human support robot as the research platform of a domestic mobile
manipulator. ROBOMECH Journal 6(1) (2019)




