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Abstract

This paper describes a method of tracking a person

with 3-D translation and rotation by integrating opti-

cal ow and depth. The target region is �rst extracted

based on the probability of each pixel belonging to the

target person. The target state (3-D position, posture,

motion) is estimated based on the shape and the po-

sition of the target region in addition to optical ow

and depth. Multiple target states are maintained when

the image measurements give rise to ambiguities about

the target state. Experimental results with real image

sequences show the e�ectiveness of our method.

1. Introduction

Visual object tracking is necessary for various ap-

plications such as autonomous vehicle navigation and

human interface. While many tracking methods have

been proposed, tracking using a single cue such as op-

tical ow[1], depth[2], or edges[3], fails when the target

cannot be identi�ed based on the employed cue. Etoh

et al.[4] have proposed to use multiple cues, which are

color, position, and intensity gradients. Okada et al.[5]

integrate optical ow and depth to extract the target

region, and Yamane et al.[6] integrate optical ow and

uniform intensity regions. In these methods, the tar-

get which cannot be correctly extracted from one cue

can be tracked by using the other cues. However, since

these methods assume that ow vectors in the target

region are almost uniform, implying that the target

translates almost parallel to the image plane, track-

ing may fail when the target moves with general 3-D

motion.

In order to track a target with 3-D motions,

several methods based on optical ow have been

proposed[8][9][10]. However, the translation along the
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Figure 1. Similar optical ow

optical axis is less sensitive to optical ow than the

translations parallel to the image plane. Also, the ro-

tation upon an axis perpendicular to the optical axis

generates the ow vectors similar to the ones gener-

ated from the translation parallel to the image plane

(see Fig. 1). Therefore, it is still di�cult to reliably

estimate every component of general 3-D motion from

optical ow alone[11]. On the other hand, the trans-

lation along the optical axis can be directly estimated

from the depth. The rotation angle upon an axis per-

pendicular to the optical axis could also be computed

if the resolution of the depth map were high enough

and the 3-D target shape were known. Although such

a depth map with su�cient resolution cannot be ob-

tained by conventional methods, since the change of

this rotation angle causes the shape change of the tar-

get region in the image, it can be an e�ective cue for

estimating this rotation.

In order to deal with the issues stated above, we

propose to extract the reliable target region by inte-

grating optical ow and depth and then estimate the

target state (3-D position, posture, and motion) using

the shape of the target region, optical ow and depth.

Although none of them alone can estimate the 3-D tar-

get state reliably, that they compensate for each other.

In this paper the rotation axis vertical to the oor is
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(a) Optical ow (Lines

show ow vectors 7

pixels apart.)

(b) Disparity (Bright

pixels have large dis-

parities. )

Figure 2. Calculated ow vectors and disparities

at 13th frame in Fig. 7 (ow vectors or dispar-
ities cannot be calculated in white regions)

the only one under consideration since our goal is to

track a walking person. However the proposed method

of integrating multiple cues is also applicable to other

rotation axes.

2. Optical Flow and Disparity

Optical ow and disparity (depth information) are

computed by obtaining the correspondences of points

between two successive frames and between a pair of

stereo images respectively. We use conventional SAD

based method[12] to obtain the correspondences. Flow

vectors and disparities are ignored at the pixels where

reliable correspondences cannot be obtained. Fig. 2

shows an example of calculated optical ow and dis-

parity. Since they are noisy and not calculated in the

full region, none of them alone can estimate reliable

3-D states of the target.

3. Target State and Observations

The coordinate system and the 3-D shape model of

the target person are shown in Fig. 3. We use a coarse

body model rather than an accurate one in order to

track a variety of people with various physical consti-

tutions.

We estimate the translation (tx ty tz)
T and the rota-

tion (rx ry rz)
T of the body coordinate system (�xed to

the body) in the world coordinate system (�xed to the

scene) and their velocities, which determine the target

state. The target state vector is

x = (qT _qT )T ; q = (rx ry rz tx ty tz)
T ; (1)

where _q represents the di�erential of q about the time.

Note that rx = rz = _rx = _rz = 0 since XZ-plane of

the world coordinate system is set to be parallel to the

oor and the target person is considered to be stand-

ing vertically. The transformation between the camera
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Figure 3. Coordinate system and person model
(The head of the model is a parallelepiped, and
the torso consists of two half cylinders and a
parallelepiped.)

coordinate system (�xed to the camera) and the world

coordinate system are known. The perspective projec-

tion model, whose parameters are also known, is used

as the camera model.

We use ow vectors (ui; vi) and disparities di at pix-

els p
i
in the target region in order to estimate the tar-

get state. Since the rotation upon the vertical axis

cannot be reliably estimated from these observations

as stated above, we employ shoulder width Ws in the

image as the target shape to estimate this rotation. If

the rotation angle upon the vertical axis and the ver-

tical and horizontal positions are updated by simply

adding their velocities to the previous states, the es-

timation error of the target motion is added to them

and tracking may fail[9]. The shoulder width functions

to correct the rotation angle which may include a large

error. In addition, we employ the target position p
T

B

in the image, which is the projected point of the origin

Ob of the body coordinate and works for correcting the

vertical and horizontal position. Thus, speci�cally the

observation vector is represented as:

y
t
=

�
Ws p

T

B
o
T

1 � � � o
T

i
� � � o

T

c

�T
; (2)

where oi = (ui vi di)
T , and c represents the number of

pixels in the target region.

4. Tracking Procedure

In each frame the state vector is estimated from the

observation vector and the state vector in the previous

frame. The tracking procedure in each frame is shown

in Fig. 4. First, the current target state is predicted

based on the previous state. A pair of stereo images

are taken and the optical ow and the disparity are

calculated. The target region is extracted by the pre-

dicted state, the optical ow and the disparity. Then

the shoulder width and the target position in the image

are computed out of the extracted target region. The
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Figure 4. Flow of tracking procedure

target state is estimated from these observations and

the predicted target state. Initially, since the previous

state vector is not available, we obtain the state vector

assuming that the moving object is the target person.

If the target state cannot be determined uniquely, pos-

sible state candidates are generated. The above track-

ing procedure is applied to each candidate. If the state

candidates inconsistent with the current observation

are detected, they are eliminated.

4.1. Target Shape and Position

Although many tracking methods use black back-

ground to simplify the segmentation of the target[13],

we extract the reliable target region even in a com-

plex background by integrating optical ow and depth.

The extracted target region is used for computing the

shoulder width and the position of the target in the

image.

Target Region The target region is determined to

be a set of pixels which have ow vectors and disparities

similar to the predicted ow vectors and the disparities

generated from the predicted target state. But the tar-

get region cannot be reliably extracted based on these

observations alone because the obtained ow vectors

and disparities are noisy (see Fig. 2). The target re-

gion should also be located at the position consistent

with the past target states.

We deal with these conditions together by calculat-

ing the probability of each pixel p
i
belonging to the

target, which is called target probability. The target

probability is calculated by using Bayes' theorem:

P (p
i
2 T joi) =

P (oijpi 2 T )P (p
i
2 T )

P (oi)
; (3)

where T represents a set of pixels belonging to the

target, P (p
i
2 T ) is the prior probability of a pixel

p
i
belonging to the target, which works for eliminat-

ing the pixels far from the predicted target region,

P (oijpi 2 T ) is the likelihood of an observation, which

works for integrating optical ow and disparity and

P (oi) is the probability of observing oi. These three

terms are calculated as follows.

The likelihood P (oijpi 2 T ) is calculated from the

probability distribution of predicted ow vectors and

predicted disparities of the target, which is approxi-

mated by the normal distribution. The expectation

~oi = (~ui ~vi ~di)
T of the normal distribution is deter-

mined to be the ow vector and the disparity generated

from the target 3-D model having the predicted target

state ~xt. Since the error (variance ~Xt) between the ob-

servation and the expectation occurs from prediction

error of the target states and the image noise, the co-

variance matrix ~Oi of the normal distribution should

be determined by taking these two errors into account.

Given that the error caused by the image noise is a

white noise with zero mean and variance Wit whose

components are independent of each other,

~oi = hi(~xt); ~Oi = Hi
~XtHi

T +Wit; (4)

where hi is the vector function transforming the target

state to ow vector and disparity, Hi =
@hi

@x

���
~xt

. Note

that the errors in the ow vector components and that

of the disparity are independent of each other because

Hi
~XtHi

T has non-zero covariances. Wit is determined

based on the contrast because the reliabilities of the

ow vector and the disparity depend on the contrast.

~xt and ~Xt are obtained from the prediction stage of

the Kalman �lter.

The prior probability is calculated by

P (p
i
2 T ) =

Z
D

ri(x)p(x)dx; (5)

�
ri(x) = 1 if p

i
2 R(x)

ri(x) = 0 else

where D represents a set of all the predicted target

states, R(x) is a target region generated by projecting

the target model whose state is x to the image plane

and p(x) is the probability density of the predicted

target state being x. The probability distribution of

the predicted target state is assumed to be the normal

distribution with mean ~xt and variance ~Xt which are

obtained from the prediction stage of the Kalman �lter.

P (oi) is calculated by Eq. (6), supposing the prob-

ability of every possible observation is equivalent if a

pixel p
i
does not belong to the target.

P (oi) = P (oijpi 2 T )P (p
i
2 T )+U(oi)(1�P (pi 2 T ));

(6)
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Figure 5. Target Region

where U represents the uniform distribution whose

range is determined assuming that objects do not move

too fast and are neither too close to the camera nor too

far from the camera.

The target region St is determined to be a set of

pixels with the target probability exceeding a thresh-

old tT . There are two kinds of error in extracting the

target region, i.e., the error of determining the pixels

in the background belonging to the target (represented

by the error rate Ep) and the error of determining the

pixels on the target belonging to the background (En).

Fig. 5(a) shows these two error rates in a representa-

tive frame for various tT . Since both En and Ep are

small and insensitive to tT while 0:2 < tT < 0:8, tT is

determined to be a value in this range.

Shoulder Width and Target Position p
sL

and

p
sR

denote the boundary points of the target region

on the horizontal line through the predicted shoulder

position (see Fig. 5(b)). The shoulder width Ws is

determined to be the distance between p
sL

and p
sR
.

The target position in the image is de�ned to be the

point which is on the vertical line through the midpoint

of p
sL
p
sR

and is dtc below the top of the head, where

dtc is the distance in the image between the top of the

head and the origin of the body coordinate.

4.2. Target State Estimation and Prediction

In each frame, the target state is estimated from

the observations and should also be consistent with

the past target states. In order to achieve this behav-

ior through the system, we utilize the Kalman �lter.

Although the employment of the Kalman �lter is not

the major issue in this paper, the implementation is

discussed briey.

Provided that the target velocity is almost constant

between two successive frames, the system equation is

xt+1 = Axt + ut; A �

�
I6 I6

0 I6

�
; (7)

where I6 represents the 6�6 unit matrix, ut represents

Frame
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Figure 6. Criterion of candidates

the prediction error, which is assumed to be a white

nose with zero mean and variance U .

The observation equation is

y
t
= h(xt) +wt; (8)

where h is the observation function transforming the

state vector to the observation vector, wt represents

the observation error, which is assumed to be a white

noise with zero mean and varianceWt. Wit in Eq. (4) is

a submatrix of Wt and the variances of shoulder width

and the target position are determined based on the

smoothness of the target region boundary. Since h(x)

is not linear function, we use the extended Kalman

�lter.

If the segmentation of the target region fails, the in-

correct observations which is the shoulder width and

target position in the image is obtained. But since

the failure of the segmentation often causes the lack

of smoothness of the target region boundary, the vari-

ances of the incorrect observations become large and

they hardly a�ect the estimation of the target state.

Thus the failures of the segmentation for several frames

do not cause the serious tracking failure.

4.3. State Generation and Elimination

Multiple rotation angles upon the vertical axis are

possible for a shoulder width because the observation

function of shoulder width is not monotone. However,

only one candidate, which may be incorrect, can be ob-

tained because of the linearization of the observation

function h. This problem happens when the estimated

rotation angle is around extrema. Therefore, when the

estimated rotation angle comes out of the neighbor-

hood of an extremum, another possible state candidate

is generated to have symmetrical rotation angle to the

original one with respect to the extremum. The covari-

ance matrix of the new state candidate is determined

to be equal to that of the original target state.

It is conceivable that the probability of each obser-

vation being derived from the false candidate is lower

than that from the correct candidate. The probabil-

ity of the jth element yk
jt

of the current observation
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No.7 No.19 No.25 No.31

Figure 7. Tracking result (Upper �gures show
the model with estimated state. Lower ones
show extracted target region (black), top of
the head (gray line), shoulder width (gray lines)
and target position (gray point)).

vector being derived from a candidate k is represented

as P (yk
jt
j~yk
jt
; (�k

jt
)2), whose probability distribution is

assumed to be the normal distribution with mean ~yk
jt

and variance (�k
jt
)2, where ~yk

jt
and (�k

jt
)2 are the jth

element of the predicted observation vector ~yk
t
= h(~xt)

and its variance respectively. We evaluate the consis-

tency of a candidate k by the mean of these probabil-

ities Ck

t
for all observations of the pixels belonging to

the target.

The correct and false candidates at the 13th frame

of Fig. 7 are shown in Fig. 6(a) and (b) respectively.

Fig. 6(c) shows the transition of Ck

t
for these candi-

dates and shows that Ck

t
of the correct candidate is

larger than that of the false candidate. Therefore, we

eliminate the candidate k if Ck

t
is apparently smaller

than the other candidates.

4.4. Initialization and Failure Recovery

At the initial frame or at the frames when the track-

ing failures have been detected, a moving object region

in the image is searched for and the region having dis-

parities similar to the mean disparity calculated inside

this moving object region is determined to be the initial

target region. The tracking failure is detected when the

extracted target region suddenly becomes small. This

happens when the target moves too fast.

The shoulder width and the target position in the

image is computed from the initial target region and

the multiple initial target state is calculated as de-

scribed above.

No.7 No.19 No.25 No.31

Figure 8. Tracking without shoulder width

#1 #8 #20

#150 #180 #200

Figure 9. Tracking result in the existence of an-
other object with similar ow vector or disparity

5. Experimental Result

Fig. 7 shows the result of tracking a person moving

with 3-D motion including rotation upon the vertical

axis. In this sequence, there are two candidates from

the 1st frame to the 4th frame and from the 23th frame

to the 29th frame and the rotation upon this axis can

be correctly estimated.

Fig. 8 shows the result of tracking without using

the shape of the target region, which means that we

exclude the shoulder width Ws from Eq. (8). In this

result, the rotation upon the vertical axis cannot be

correctly estimated because the accurate estimation of

angular velocity using optical ow is di�cult and esti-

mation error is accumulated.

In the sequence shown in Fig. 9, the target person

and the other person walk closely in the opposite di-

rection around the frame #8 and they walk apart in

the same direction around the frame #180. In these

cases, although the target person cannot be distin-

guished from the other person based on the disparity or

the optical ow alone, the target person can be distin-

guished by integrating the optical ow and the depth

thus the target with 3-D motion is correctly tracked.

The trajectory of the target person projected on the
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oor is shown in Fig. 10. There is a sudden change of

the rotation angle at A and A', because a new state

candidate is generated in this frame and the original

one is eliminated in the subsequent frame. At B, B',

and B" the estimated states are unstable because the

background region is extracted as a part of the target

region due to the error of the disparities caused by

mistakes of correspondences.

6. Discussion and Conclusion

When the target stops walking or the target walks

near the background objects, similar situations occur

as shown in Fig. 9. The target can be correctly tracked

in these cases. If the target walks near an object

with the same velocity, the extracted target region in-

cludes both of them. Even in this case the target po-

sition is still tracked and the fact that two objects are

tracked can be detected when the shoulder width be-

comes much larger than the predicted one. Although

the estimation of the rotation angle becomes incorrect,

it becomes correct when the two objects get separated.

In this paper, we proposed to integrate the shape

and the position of the target region, optical ow, and

depth so that they compensate for each other to track a

person with 3-D motion. The target region was reliably

extracted by integrating the optical ow and the depth

in complex backgrounds. Furthermore multiple state

candidates are maintained for robust tracking.
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