
This is the accepted version of the manuscript.

The final authenticated version is available online at https://doi.org/10.1007/978-3-031-02375-0 26.

Pattern Recognition. ACPR 2021. Springer Lecture Notes in Computer Science

Semantic Segmentation and Depth Estimation
with RGB and DVS Sensor Fusion for

Multi-view Driving Perception

Oskar Natan1,2[0000−0003−3896−0448] and Jun Miura1[0000−0003−0153−2570]

1 Department of Computer Science and Engineering,
Toyohashi University of Technology, Aichi 441-8580, Japan

{oskar.natan.ao, jun.miura}@tut.jp
2 Department of Computer Science and Electronics,

Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
oskarnatan@ugm.ac.id

Abstract. In this research, we present a novel deep multi-task learning
model to handle the perception stage of an autonomous driving sys-
tem. The model leverages the fusion of RGB and dynamic vision sensor
(DVS) images to perform semantic segmentation and depth estimation in
four different perspectives of view simultaneously. As for the experiment,
CARLA simulator is used to generate thousands of simulation data for
training, validation, and testing processes. A dynamically changing envi-
ronment with various weather conditions, daytime, maps, and non-player
characters (NPC) is also considered to simulate a more realistic condi-
tion with expecting a better generalization of the model. An ablation
study is conducted by modifying the network architecture to evaluate
the influence of the sensor fusion technique. Based on the test result on
2 different datasets, the model that leverages feature maps sharing from
RGB and DVS encoders is performing better. Furthermore, we show
that our model can inference faster and have a comparable performance
against another recent model. Official implementation code is shared at
https://github.com/oskarnatan/RGBDVS-fusion.

Keywords: Sensor fusion · Semantic segmentation · Depth estimation
· Multi-task learning · Driving perception.

1 Introduction

An autonomous driving system contains a lot of important elements, either on
the hardware side or software side [10]. Specifically, on the software side, there
are four main stages that must be considered to achieve a fully autonomous
driving operation, there are environment perception, localization, planning, and
control [14]. As the first stage, perception has always been a challenging task
in developing the foundation of the complex autonomous driving system. The
system needs to understand what kinds of objects are showing up on cameras
and their relative distance from the ego vehicle. Once the necessary information

https://doi.org/10.1007/978-3-031-02375-0_26
https://github.com/oskarnatan/RGBDVS-fusion

2 O. Natan and J. Miura

is ready, another task such as localization, path planning, and actuator control
can be done. An autonomous driving vehicle is usually equipped with several
sensors, mainly RGB cameras to capture multiple views of surroundings [11].
When it comes to computer vision problems, deep learning algorithm, especially
convolutional neural network (CNN) has been proofed as the state-of-the-art
by plenty of research [23]. For instance, a CNN-based hierarchical multi-scale
attention model [26] improved by Borse et al. [1] is currently holding the highest
intersection over union (IoU) score of 85.6% in performing semantic segmentation
on a well-known autonomous driving dataset Cityscapes [5]. Another example
comes from the depth estimation task which is related to the estimation of
relative distance on each pixel of an image. Ranftl et al. [20] currently hold the
best depth estimation performance on NYU-Depth V2 dataset [17] with root
mean squared error of 0.357. Therefore, it would be the right decision if CNN is
used as the main algorithm to deal with various perception tasks.

Currently, there are plenty of important tasks in the field of autonomous
driving perception such as semantic segmentation and depth estimation as men-
tioned earlier. Developing a single-task deep learning model to handle each task
can be costly and inefficient [30]. Instead of split the task, we develop multi-task
learning (MTL) model that follows an encoder-decoder fashion with additional
skip connections to deal with multiple perception tasks simultaneously. Then,
another challenge comes from multi-input and multi-modal processing where
multiple data need to be processed together to achieve a better understanding.
To address this issue, a sensor fusion technique can be adopted where various
sensors are deployed to provide more various data in representing the environ-
mental condition [7]. In this research, we placed 8 sensors composed of RGB and
DVS cameras in 4 different positions on the ego vehicle to capture front (F), left
(L), right (R), and back (B) views. DVS sensors are used to support RGB cam-
eras in providing more information as it is susceptible to illumination variations,
especially during night time [16]. With various data modalities taken as inputs,
the model is expected to perform better in a dynamically changing environment.
In this research, the model is developed entirely from scratch without transfer
learning from any pre-trained models so that the architecture is highly customiz-
able. Moreover, we conduct the experiment on 2 different datasets gathered from
CARLA simulator [6] to strengthen our findings. Based on the aforementioned
approaches, the novelty of this research can be listed in the following points.

– We present a deep MTL model that has input-specified encoders and task-
specified decoders. The model processes and fuses multiple inputs of RGB
and DVS images to perform multiple views of semantic segmentation and
depth estimation in one forward pass. Since the model is developed entirely
from scratch, the architecture is highly extendable to retrieve more inputs.

– We study the influence of sensor fusion between RGB and DVS cameras.
Based on the ablation experiment, our model gains more improvement when
both RGB and DVS images are fused. Moreover, we also perform a com-
parative study with another recent MTL model to clarify their performance
based on the metric score and inference speed.

Title Suppressed Due to Excessive Length 3

2 Related Work

To date, a lot of research in driving perception has been done. In this section,
we explain several kinds of related research which are also inspiring our works.

2.1 Deep Multi-task Learning

In deep learning, the process of learning to perform several tasks simultane-
ously is called multi-task learning. MTL aims to leverage shared feature maps
during the training process to boost the performance of each task [21]. There
is plenty of studies in the MTL area that is applied to the autonomous driv-
ing vehicle problems such as conducted by Teichmann et al. [27] where a deep
learning model called MultiNet is used to perform several perception tasks such
as road segmentation, vehicle detection, and street classification simultaneously.
The model works well, however, it needs improvement in recognizing more crucial
and various objects on the road. Koci et al. [12] presented a network architec-
ture called J-Net that processes RGB images to perform various control tasks
such as controlling the steering wheel, speed, brake, etc. However, the simulation
condition still needs to be improved to test the model generalization. These is-
sues are solved by Cipolla et al. [4] where they develop a semantic segmentation
model to recognize more various kinds of objects in Cityscapes dataset [5]. It
also performs instance segmentation and depth estimation by creating a branch
of task-specified decoder for each task. However, it would be better if the model
can take multiple inputs with multiple data modalities so that it can be applied
to multi-view systems for a better understanding.

2.2 Sensor Fusion in Deep Learning

A study of multiple inputs processing on an autonomous driving perception
model has been done by Hane et al. [9] where several cameras are placed in several
different positions on the ego vehicle. Therefore, the model will have a better
capability in understanding the environmental condition. Although it has more
views of RGB images, the model may still fail during nighttime or heavy rain
due to poor illumination conditions. Thus, it needs to be combined with another
kind of sensor such as a DVS camera as an alternative in providing surrounding
information, especially in performing an active perception [16] [29]. Hence, the
idea of using the DVS camera can also be adopted in solving an autonomous
driving perception problem. To handle various data modalities, Nobis et al. [18]
have shown that a deep learning model can be used to process multiple sensor
data by fusing extracted feature maps from each input modality. Nobis et al.
develop an object detection model called CameraRadarFusionNet (CRF-Net)
that processes camera and radar data to get a better result on nuScene dataset
[2]. CRF-Net provides a specific encoder for each input data and fuses extracted
feature maps into the Feature Pyramid Network [15] to perform bounding boxes
regression and classification in one forward pass.

4 O. Natan and J. Miura

Fig. 1: Sensor placement on the ego vehicle. Four pairs of RGB and DVS cameras
are mounted in 4 different positions. The camera’s vertical angle of view θ is set
to 20o to catch a better view of the surroundings. The red lines on each camera
represent the horizontal field of view which is set to 90o.

In this research, we consider adopting several ideas shown in the aforementioned
research. First, we utilize DVS cameras to provide more information as it is more
robust against poor illumination problem [16] [29]. However, instead of being
used to replace RGB cameras, DVS cameras are utilized as support sensors.
Therefore, we also adopt the idea of sensor fusion shown by Nobis et al. [18],
especially on its strategy in providing an input-specified encoder to process each
input modality and fuse them several times at several points in the architecture.
Finally, we adopt the task-specified decoder inspired by Cipolla et al. [4] to
create two branches of decoders that perform semantic segmentation and depth
estimation simultaneously. Hence, a complete deep learning model that processes
and fuses multiple inputs to perform multiple tasks can be achieved.

3 Methodology

In this section, we describe the generation of simulation data using CARLA
simulator with a lot of settings on weather conditions, NPCs, sensors, and many
more. Finally, the network architecture is explained along with hyperparameter
tuning and experiment setup including the loss and metric formulation.

3.1 Dataset and Input/Output Representation

In this research, CARLA simulator [6] is used to generate thousands of simulation
data for training, validation, and testing sets retrieved from F, L, R, B views
of the ego vehicle as shown in Figure 1. Various kinds of weather conditions
(sunny, rainy, foggy, cloudy) and day times (morning, noon, evening, night)
are considered to vary the simulation conditions. Besides that, we also use 2
different CARLA maps to ensure the fairness of model validation and testing.
Then, numerous pedestrians and other vehicles such as cars, trucks, bikes, and
motorcycles are also spawned to simulate more realistic conditions. Therefore,
the model is expected to have a better generalization.

Title Suppressed Due to Excessive Length 5

As for the model inputs/outputs (I/O), both RGB and DVS images along
with their semantic segmentation and depth estimation ground truths. To evalu-
ate the model performance with considering a fair experimental study, we create
2 different sets of data named set A and B which are taken from 2 different
CARLA maps named town01 and town02. Based on the CARLA documenta-
tion, town01 and town02 are different but have similar characteristics. Therefore,
we can make a fair experiment by separating the training set from validation and
testing sets completely by differentiating the map. In set A, 4000 pairs of I/O
from town01 are used for training, 1000 pairs of I/O from town02 for validation
and another 1000 pairs of I/O from different regional areas in town02 are used
for testing. Meanwhile, in set B, we retrieve the same amount and ratio of data
but with a different map configuration where town02 is used for training, and
town01 is for validation and testing. With this scenario, a fair experiment can
be achieved where the road situation for each set are totally different.

During the data generation process, we retrieve RGB images as IRGB ∈
R128×128×3 which represent the height, width, and RGB channels with 8-bit
value on each pixel. Meanwhile, the original form of DVS images are arrays
ADV S ∈ RN×4 which represents the total N number of 4-elements 1D array
retrieved in one simulation step. The element for each array is composed of
timestamp, x-position, y-position, and polarization. The timestamp is used for
data synchronization with RGB images and ground truths. Then, the x and
y-position show the pixel location considered to have a brightness change. The
x,y-position has a maximum range of 128. Meanwhile, the polarization can be
positive or negative based on the brightness change. Depends on how many pixels
are changing, the total number of N can be different for each DVS array ADV S .
Thus, in order to fix the number of array elements in ADV S and also to match
with the input layer of the network architecture, we pre-process DVS arrays
to be DVS images IDV S ∈ R128×128×2 which represent the height, width, and
polarization channels. The x,y-position takes place on the height and width of
IDV S , while the polarization takes place on the channel where the first channel
is used for positive polarization and the second channel is used for negative
polarization. We set the pixel that has polarization to have a full 8-bit value and
otherwise 0. Mathematically, it can be written as in (1).

IDV Si
=

{
255 if IDV Si is polarized

0 otherwise,
(1)

where IDV Si
is the positive or negative polarization of ith pixel of the DVS image

IDV S . As for ground truths, semantic segmentation images are retrieved from the
CARLA simulator following the RGB color pallets in the cityscapes dataset [5].
We use 6 classes of objects (poles, road, road lanes, sidewalks, pedestrian, vehi-
cles) that are considered as important objects in the area of driving perception.
We handled the semantic segmentation mask for each class by separating each
unique colormap in Isegmentation ∈ R128×128×3 and store them into a tensor
Imask ∈ R128×128×6 where each element has the value of 0 or 1 depends on what
kind of semantic class appear on each pixel in Isegmentation.

6 O. Natan and J. Miura

Meanwhile, the ground truth of the depth estimation task can be obtained by
simply read the logarithmic depth images as Idepth ∈ R128×128×1 which represent
the height, width, and 1 channel of 8-bit logarithmic depth value. For the training
purpose, each element in all input and output tensors are normalized between
0 to 1 so that each element will have the same influence. Finally, the channel
for each input and output tensors are moved to the first axis as needed by
PyTorch deep learning framework [19]. Therefore, RGB and DVS inputs size
become (3 × 128 × 128) and (2 × 128 × 128) respectively. Meanwhile, semantic
segmentation and depth estimation outputs size become (6 × 128 × 128) and
(1× 128× 128) respectively.

3.2 Network Architecture

As mentioned in the previous subsection, we use PyTorch deep learning frame-
work [19] to build the model along with other python packages. The visualization
of the model architecture can be seen in Figure 2. The model is following the
encoder-decoder style [28] with additional skip connections inspired from UNet
paper [22]. Each feature map in both RGB and DVS encoders is connected to
its symmetric feature maps in both depth estimation and semantic segmenta-
tion encoders. With this configuration, each encoder can act as a supporter for
one another. For example, when the illumination is very poor (e.g. night) and
RGB cameras are failed to capture enough information of the surroundings, the
network can learn how to leverage extracted information mainly from the DVS
encoder. On the other hand, when the car is not moving (e.g. at the crossroads)
and there is no enough information as the brightness change is very rare, the net-
work can learn how to rely more on the RGB encoder. In this architecture, each
convolutional block on encoder and decoder has 2 times of ((3×3) convolutional
layer + batch normalization + ReLU activation). Meanwhile, each convolutional
block on the bottlenecks has 3 times of them to extract more information from
all views concatenation. Then, they are followed by (2× 2) max-pooling on the
encoder side and (2× 2) bilinear upsampling on the decoder side. To deal with
the overfitting issue, several dropout layers with p = 0.5 are placed on the bot-
tleneck [24]. Finally, a pointwise (1 × 1) convolutional layer is used to reduce
the channel number of feature maps to match with the ground truth size. Then,
it is followed by a sigmoid activation for semantic segmentation and a ReLU
activation for depth estimation.

In order to discover the advantage of sensor fusion on an MTL model, an
ablation study is performed during the experiment. First, we remove the DVS
input block (blue) so that the model only processes RGB images to perform
semantic segmentation and depth estimation. We refer to this model as A0 where
only RGB images are fed into the network. Then, on the second model named
A1, DVS inputs are added so that the model is processing 4 pairs of RGB and
DVS images. Furthermore, feature maps from DVS encoders are concatenated
to the semantic segmentation and depth estimation decoders as well as feature
maps from RGB encoders.

Title Suppressed Due to Excessive Length 7

Fig. 2: Network architecture. Blue and green boxes represent the inputs and
feature maps for each view (F, L, R, B). Dark blue and dark green boxes are the
concatenation across all views, while the dark red box is the concatenation of all
feature maps. Then, grey and yellow boxes represent feature maps and outputs
for each view of depth estimation (DE) and semantic segmentation (SS). 5 boxes
in the center are considered as bottlenecks where a dropout layer (purple) is
applied for each. Dark grey and dark yellow boxes are the specific bottlenecks
for each task. Solid lines represent the convolution block, while dashed lines
represent the skip connection and concatenation (orange boxes). Each dashed
line is connecting the feature map on encoders with its symmetric feature map
on decoders. Denoted with numbered small blue squares and green circles, both
encoders are used to support both tasks decoders. Finally, red lines represent
the final pointwise convolution followed with an activation function.

3.3 Experiment Setup

We set the batch size to 16 so that there will be 250 steps of weights update in
one epoch. Kaiming initialization method [8] is used to initialize entire model
weights so that the model can be converged faster. Then, a standard Stochastic
Gradient Descent (SGD) [25] with momentum β = 0.9 is used to train the
model. For semantic segmentation loss, pixel-wise binary cross-entropy (BCE)
(2) combined with dice loss (3) are calculated together to allow loss diversity.

LBCE =
1

4

4∑
t=1

− 1

N

N∑
i=1

yti × log(ŷti) + (1− yti)× log(1− ŷti) (2)

Ldice =
1

4

4∑
t=1

1− 2|ŷt ∩ yt|
|ŷt|+ |yt|

(3)

8 O. Natan and J. Miura

We average all losses from all views (F, L, R, B). N is total elements in the
predicted output tensor of task t (denoted with ŷt) which is the same as the
ground truth yt with the size of (6× 128× 128). Meanwhile, yti is ground-truth
value of ith pixel in yt and ŷti is predicted value of ith pixel in ŷt after sigmoid
activation. Then, as for the depth estimation loss, Huber loss (4) is used since
it has some benefits compared to mean absolute error (MAE) that constantly
have a large gradient and mean squared error (MSE) which is not robust against
outliers. Huber loss is suitable for any regression-based task as it curves around
the minima and is robust against outliers.

Lhuber =
1

4

4∑
t=1

1

N

N∑
i=1

zti, (4)

where zti is given by (5).

zij =

{
0.5(ŷij − yij)2 if |ŷij − yij | < α

α(|ŷij − yij | − 0.5α) otherwise
(5)

Similar to the semantic segmentation, yti is the ground truth value of ith

pixel in yt and ŷti is the predicted value of ith pixel in ŷt after ReLU activation.
However, the size of ŷt and yt is only (1×128×128) since there is only 1 channel
containing the normalized logarithmic depth value. Then, we set α = 0.5 as the
threshold for Huber loss to start to curve around the minima. Finally, the total
loss can be calculated as in (6).

Ltotal = (LBCE + Ldice) + 1.5× Lhuber (6)

Huber loss is weighted with a constant of 1.5 to balance the huge value
computed by the semantic segmentation loss function which is composed of BCE
and dice loss. Therefore, the model is expected to not losing its learning focus
on the depth estimation task. During the training process, weight decay wd is
also used to penalize the model complexity and to prevent overfitting [13]. Thus,
the final total loss can be calculated as in (7).

Ltotal = Ltotal + wd ×Σw2, (7)

The sum-squared of all model weights (Σw2) can be very large. Thus, we
set a small value of wd = 0.0001 so that it will not affect the total loss too
much, as we want the model to learn more from depth estimation and semantic
segmentation losses. In order to evaluate model performance, we also compute
metric functions composed by average IoU (8) and average MAE (9).

IoU =
1

4

4∑
i=1

|ŷt ∩ yt|
|ŷt| ∪ |yt|

(8)

MAE =
1

4

4∑
i=1

1

N

N∑
i=1

|ŷti − yti| (9)

Title Suppressed Due to Excessive Length 9

As shown in (8) and (9), the IoU and MAE are averaged over all views which
means that we evaluate the model performance globally. Finally, we also average
the loss and metric on all batches for both training and validation sets on each
epoch to monitor and evaluate the model performance. In accordance with the
fast and smooth update of the model weights, we set the initial learning rate
η0 = 0.1 and reduce it by half gradually if the validation total metric (TM) (10)
is not decreasing in 5 epochs in a row. The learning rate reduction will stop if it
hits the minimum learning rate of ηmin = 0.00001.

TM = MAE + (1− IoU) (10)

To prevent unnecessary computational cost, an early stopping strategy is used
to stop the training process if there is no drop in the validation total metric in 35
epochs in a row. Therefore, the total epochs might be different for each model.

4 Result and Discussion

In this section, an ablation study is performed to study the effect of adding DVS
images as the model inputs. In this study, we create 2 different model variants
where the first one only takes RGB images (A0) while the other one takes both
RGB and DVS images (A1) as described in Subsection 3.2. Then, to clarify the
model performance, we also conduct a comparative study against another MTL
model named W-Net [3] that performs the same tasks. Since there are 4 views
around the ego vehicle, we create a W-Net model for each view. The evaluation
is conducted by comparing metric scores on the validation and testing set as
described in Subsection 3.3. Moreover, we also compare the inference speed to
strengthen our justification. Finally, as the qualitative study, we provide several
samples of inference results on both test sets.

4.1 Performance Gain by Sensor Fusion

RGB images are usually used as the only input when dealing with semantic
segmentation and depth estimation tasks. However, in this research, we study
the influence of providing DVS images as the input and fused together with
RGB images in the network architecture to leverage the extracted information.
As mentioned in Subsection 3.2, in order to evaluate the contribution of DVS
images, we first remove the DVS input block on the Figure 2 and named the
model as A0 model, then compare its performance with the A1 model that has
both RGB and DVS input blocks on its architecture. To perform fair testing
and comparison, we use 2 different datasets as described in Subsection 3.1. The
comparison of validation total metric, semantic segmentation IoU, and depth
estimation MAE on set A and set B can be shown in Figure 3. The A1 model
has a lower total metric score compared to the A0 model on both validation
sets. During the validation process, the A1 model has the record of the lowest
validation TM of 0.148 (set A) and 0.190 (set B).

10 O. Natan and J. Miura

Validation Set A Validation Set B

Fig. 3: Performance comparison during validation process

Note: Black × mark means the best score among all epochs.

Table 1: Model Performance Comparison on Test Sets

Dataset Model TM Score Depth MAE Segm. IoU FPS

A0 0.196 ± < 0.001 0.056 ± <0.001 0.860 ± <0.001 100
Test A A1 0.188 ± < 0.001 0.059 ± <0.001 0.871 ± <0.001 83

W-Net [3] 0.166 ± < 0.001 0.057 ± <0.001 0.891 ± <0.001 58

A0 0.193 ± < 0.001 0.038 ± <0.001 0.845 ± <0.001 104
Test B A1 0.186 ± < 0.001 0.035 ± <0.001 0.849 ± <0.001 84

W-Net [3] 0.220 ± 0.001 0.038 ± <0.001 0.818 ± <0.001 57

The uncertainty on each prediction score is measured by calculating the variance over
1000 inference results. Meanwhile, the speed test is conducted on the same NVIDIA
RTX 3090 with batch size = 1 and calculated in frame per second (FPS). The FPS
difference on both datasets is caused by the fluctuating GPU condition.

Based on the inference result on testing sets shown in Table 1, the A1 model
also has lower TM scores of 0.188 (set A) and 0.186 (set B). Considering that
the A1 model has a better score in all validation and testing sets, it can be said
that DVS is giving a positive influence on the model performance. However, as
a result of having more encoders to process DVS data, the A1 model inference
slower than the A0 model with an FPS rate of around 83 to 84. Meanwhile,
the qualitative result can be seen in Figure 4 where both A0 and A1 models
are deployed in the night (test set B: town01, left) and cloudy day (test set
A: town02, right). The A1 model seems to have a better result compared to
the A0 model. The A1 model is more stable in segmenting rare objects such as
poles and the small appearance of surrounding vehicles, especially during a poor
illumination condition (night) as it can leverage the information provided by the
DVS. However, both model seems comparable in the depth estimation task.

Title Suppressed Due to Excessive Length 11

Fig. 4: Inference on test images

Note: F (front); L (left); R (right); B (back); GT (ground truth).

12 O. Natan and J. Miura

4.2 Comparison with Another Model

As mentioned in Section 1, a further comparative study against another MTL
model is conducted to clarify the model performance. In this research, we com-
pare our model with W-Net [3] which is composed of 2 serially connected UNet
models [22]. W-Net uses its first UNet block to perform semantic segmentation
first. Then, the prediction is concatenated with the RGB image as the input for
the second UNet block to perform depth estimation. Therefore, W-Net is able
to perform both semantic segmentation and depth estimation simultaneously in
one forward pass. For a fair comparison, we follow the training configuration
described in the W-Net paper to train the model using our datasets. Following
the mathematical formulas described in Subsection 3.3, the comparison of metric
scores can be seen in Table 1. To be noted, the metric score is averaged across
all views as there are 4 independent W-Net models in total.

Based on Table 1, both A1 and W-Net models can be said to be comparable
to each other. On test set A, W-Net performs better than the A1 model with a
lower TM score of 0.166. Meanwhile, on test set B, the A1 model is surpassing
W-Net with a lower TM score of 0.186. Then, as shown in Figure 4, W-Net
seems to have a better result, especially when the illumination is enough (set
A) as it has much more layers compared to the A1 model. W-Net can estimate
and segment very thin objects such as light poles on both left images of depth
estimation and semantic segmentation. However, in the term of inference speed,
A1 model is still better with an FPS rate of more than 80 on both datasets.
Meanwhile, W-Net only achieves an FPS rate of below 60 when tested with
the same device. Therefore, even though the TM score is comparable, it can be
said that a single A1 model is more preferable as it can perform faster inference
compared to the combination of 4 W-Net models.

5 Conclusion and Future Work

In this research, we discover the usefulness of the sensor fusion of RGB and DVS
cameras by comparing 2 model variants: A0 (without DVS) and A1 (with DVS).
Then, a comparative study against another model named W-Net is conducted
to clarify the model performance.

Based on the ablation study, we conclude that fusing both RGB and DVS
images will boost the overall model performance since the model can take more
distinctive information from both RGB and DVS encoders. From the test re-
sult on both datasets, the total metric scores are constantly lowered from 0.196
to 0.188 (set A) and 0.193 to 0.186 (set B). Moreover, the A1 model can deal
with a poor illumination issue compared to the A0 model that fails to segment
surrounding vehicles correctly. Considering that the A1 model is gaining more
improvement, it can be said that taking both RGB and DVS images is bet-
ter to get a more clear scene understanding. Furthermore, the A1 model still
maintains to has comparable performance compared with the combination of
4 W-Net models. Considering the further model deployment, the A1 model is
more preferable as it can inference faster with an FPS rate above 80.

Title Suppressed Due to Excessive Length 13

In the future, the research can be extended to study the network architecture
modification, especially on its convolutional blocks. There are plenty of well-
known convolutional blocks that are able to improve the model performance
further. Then, a study on loss function formulation is also an interesting study,
especially in dealing with rare objects issue.

References

1. Borse, S., Wang, Y., Zhang, Y., Porikli, F.: InverseForm: A loss function for struc-
tured boundary-aware segmentation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 5901–5911 (2021)

2. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuScenes: A multimodal dataset for autonomous
driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 11618–11628 (2020)

3. Cantrell, K., Miller, C., Morato, C.: Practical depth estimation with image seg-
mentation and serial U-Nets. In: Proceedings of the International Conference on
Vehicle Technology and Intelligent Transport Systems. pp. 406–414 (2020)

4. Cipolla, R., Gal, Y., Kendall, A.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 7482–7491 (2018)

5. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 3213–3223 (2016)

6. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open
urban driving simulator. In: Proceedings of the Annual Conference on Robot Learn-
ing. pp. 1–16 (2017)

7. Fayyad, J., Jaradat, M.A., Gruyer, D., Najjaran, H.: Deep learning sensor fusion for
autonomous vehicle perception and localization: A review. Sensors 20(15) (2020)

8. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 1026–1034 (2015)

9. Hne, C., Heng, L., Lee, G.H., Fraundorfer, F., Furgale, P., Sattler, T., Pollefeys, M.:
3D visual perception for self-driving cars using a multi-camera system: Calibration,
mapping, localization, and obstacle detection. Image and Vision Computing 68,
14–27 (2017)

10. Kato, S., Takeuchi, E., Ishiguro, Y., Ninomiya, Y., Takeda, K., Hamada, T.: An
open approach to autonomous vehicles. IEEE Micro 35(6), 60–68 (2015)

11. Khatab, E., Onsy, A., Varley, M., Abouelfarag, A.: Vulnerable objects detection
for autonomous driving: A review. Integration 78, 36–48 (2021)

12. Kocic, J., Jovicic, N., Drndarevic, V.: An end-to-end deep neural network for
autonomous driving designed for embedded automotive platforms. Sensors 19(9)
(2019)

13. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: Pro-
ceedings of the International Conference on Neural Information Processing Sys-
tems. pp. 950–957 (1991)

14 O. Natan and J. Miura

14. Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter,
J.Z., Langer, D., Pink, O., Pratt, V., Sokolsky, M., Stanek, G., Stavens, D., Te-
ichman, A., Werling, M., Thrun, S.: Towards fully autonomous driving: Systems
and algorithms. In: Proceedings of the IEEE Intelligent Vehicles Symposium. pp.
163–168 (2011)

15. Lin, T.Y., Dollr, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyra-
mid networks for object detection. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 936–944 (2017)

16. Munir, F., Azam, S., Jeon, M., Lee, B.G., Pedrycz, W.: LDNet: End-to-end lane
marking detection approach using a dynamic vision sensor. IEEE Transactions on
Intelligent Transportation Systems pp. 1–17 (2021)

17. Nathan, S., Derek, H., Pushmeet, K., Rob, F.: Indoor segmentation and support
inference from RGBD images. In: Proceedings of the European Conference on
Computer Vision. pp. 746–760 (2012)

18. Nobis, F., Geisslinger, M., Weber, M., Betz, J., Lienkamp, M.: A deep learning-
based radar and camera sensor fusion architecture for object detection. In: Pro-
ceedings of the Sensor Data Fusion: Trends, Solutions, Applications. pp. 1–7 (2019)

19. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
PyTorch: An imperative style, high performance deep learning library. In: Advances
in Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019)

20. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction.
ArXiv (2021), https://arxiv.org/abs/2103.13413

21. Ravoor, P.C., Sudarshan, T.S.B.: Deep learning methods for multi-species animal
re-identification and tracking a survey. Computer Science Review 38 (2020)

22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedi-
cal image segmentation. In: Proceedings of the International Conference on Medical
Image Computing and Computer-Assisted Intervention. pp. 234–241 (2015)

23. Shekhar, H., Seal, S., Kedia, S., Guha, A.: Survey on applications of machine
learning in the field of computer vision. In: Emerging Technology in Modelling and
Graphics. pp. 667–678 (2020)

24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15(56), 1929–1958 (2014)

25. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. In: Proceedings of the International Conference
on Machine Learning. pp. 1139–1147 (2013)

26. Tao, A., Sapra, K., Catanzaro, B.: Hierarchical multi-scale attention for semantic
segmentation. ArXiv (2020), https://arxiv.org/abs/2005.10821

27. Teichmann, M., Weber, M., Zollner, M., Cipolla, R., Urtasun, R.: MultiNet: Real-
time joint semantic reasoning for autonomous driving. In: Proceedings of the IEEE
Intelligent Vehicles Symposium. pp. 1013–1020 (2018)

28. Ye, J.C., Sung, W.K.: Understanding geometry of encoder-decoder CNNs. In: Pro-
ceedings of the International Conference on Machine Learning. pp. 7064–7073
(2019)

29. Yousefzadeh, A., Orchard, G., Gotarredona, T.S., Barranco, B.L.: Active percep-
tion with dynamic vision sensors. minimum saccades with optimum recognition.
IEEE Transactions on Biomedical Circuits and Systems 12(4), 927–939 (2018)

30. Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Transactions on
Knowledge and Data Engineering (early access) (2021)

https://arxiv.org/abs/2103.13413
https://arxiv.org/abs/2005.10821

	Semantic Segmentation and Depth Estimation with RGB and DVS Sensor Fusion for Multi-view Driving Perception

