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Towards Compact Autonomous Driving Perception
with Balanced Learning and Multi-sensor Fusion

Oskar Natan and Jun Miura, Member, IEEE

Abstract—We present a novel compact deep multi-task learning
model to handle various autonomous driving perception tasks
in one forward pass. The model performs multiple views of
semantic segmentation, depth estimation, light detection and
ranging (LiDAR) segmentation, and bird’s eye view projection
simultaneously without being supported by other models. We also
provide an adaptive loss weighting algorithm to tackle the imbal-
anced learning issue that occurred due to plenty of given tasks.
Through data pre-processing and intermediate sensor fusion
techniques, the model can process and combine multiple input
modalities retrieved from RGB cameras, dynamic vision sensors
(DVS), and LiDAR placed at several positions on the ego vehicle.
Therefore, a better understanding of a dynamically changing
environment can be achieved. Based on the ablation study, the
model variant trained with our proposed method achieves a
better performance. Furthermore, a comparative study is also
conducted to clarify its performance and effectiveness against
the combination of some recent models. As a result, our model
maintains better performance even with much fewer parameters.
Hence, the model can inference faster with less GPU memory
utilization. Moreover, the result tends to be consistent in 3
different CARLA simulation datasets and 1 real-world nuScenes-
lidarseg dataset. To support future research, we share codes and
other files publicly at https://github.com/oskarnatan/compact-
perception.

Index Terms—Driving perception, Scene understanding, Sen-
sor fusion, Multi-task learning, Adaptive loss weighting.

I. INTRODUCTION

Based on the functional perspective, processing step, and
information flow, a complete autonomous driving vehicle
system is composed of four main stages: perception, planning,
control, and system supervision. The main objective of the
perception stage is to understand the surrounding area of
the ego vehicle by processing given data retrieved from the
sensor. Once clear information is available, the system is
ready to receive commands like goals or missions for the
planning stage. Then, after the trajectory or navigation path
is generated, any instruction related to the actuator can be
executed in the control stage. Finally, system supervision is
responsible to monitor all aspects of the vehicle and ensure
that everything is working as planned [1] [2]. As the first stage
in an autonomous driving system, the perception stage holds
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an important role in the environmental scene understanding,
which is the foundation before making any further decisions
[3]. However, there are plenty of problems or issues in the
area of autonomous driving perception that are challenging
the understanding capability of the system [4]. For instance,
the environmental condition where the system is deployed
can be varied such as the weather can be sunny, cloudy,
foggy, rainy, or poor illumination at night. The situation on the
road is also unpredictable as there are numerous vehicles and
pedestrians along with their uncertain behavior on the street
that is challenging the system’s adaptability. Therefore, the
system must be supported with multiple kinds of sensors to
provide various information and cover each other’s weakness
[5]. For example, a system cannot rely on the RGB camera in
poor illumination conditions as it may fail to capture enough
information. Therefore, another sensor such as DVS, radar,
and LiDAR can serve as alternatives [6] [7] [8]. Thus, a proper
technique to pre-process and combine multiple data modalities
is also needed to meet the system needs. Moreover, a full
scene understanding with multiple perspectives of views is also
important to improve the system’s capability. Hence, several
sensors can be attached at several positions on the ego vehicle
to capture multiple views of the surrounding [9].

To achieve a compact scene understanding and fulfill the
needs in the perception stage, we conduct research as shown
in Figure 1. Given a set of input data, we propose a model that
performs various perception tasks with multiple perspectives
of views: front (F), left (L), right (Ri), rear (R), and top (T). To
be more specific, our model performs semantic segmentation
(SS), depth estimation (DE), LiDAR segmentation (LS), and
bird’s eye view projection (BEVP) simultaneously. The model
is supported with 4 RGB cameras, 4 DVS, and 1 LiDAR to
provide rich information of a dynamically changing environ-
ment. Then, data pre-processing and sensor fusion techniques
can be used to handle multiple kinds of data modalities [10]
[11]. Thus, a compact environmental scene understanding,
especially at the surrounding area of the ego vehicle can be
obtained. We consider using the multi-task learning (MTL)
approach since handling each task with a single-task model
can be very costly and inefficient [12] [13] [14]. However,
for an MTL model, learning by combining several tasks is
not always consistently better than in single-task learning.
Different combined tasks may be conflicting with the gradient
signals during the training process. If this issue is ignored, the
outcome of the MTL approach cannot be optimal and cause
performance degradation, or the training process may focus on
one specific task only [15]. Hence, a proper strategy to balance
the gradient and prevent imbalanced learning is a must. One
of the possible answers is giving a set of loss weights to
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Fig. 1: Overview of this research. Given four views (L-F-Ri-R) of RGB and DVS images, and a top view of pre-processed
LiDAR point clouds as inputs (blue), the model performs four views of semantic segmentation and depth estimation along
with a top view of LiDAR segmentation and bird’s eye view projection as outputs (red) simultaneously in one forward pass.

compensate for the imbalance. However, tuning a combination
of loss weights can be tedious and computationally expensive.
Therefore, rather than giving a fixed set of values [16], loss
weights need to be tuned automatically [17] [18].

Based on the aforementioned challenges in the field of en-
vironmental scene understanding, our approaches in achieving
a compact autonomous driving perception and the novelty of
this research can be summarized as follows:

• We present a compact deep MTL model that performs
various driving perception tasks without being supported
by other models. Our model performs multiple views
of depth estimation, semantic segmentation, LiDAR seg-
mentation, and bird’s eye view projection simultaneously
in one forward pass. Through data pre-processing and
multi-sensor fusion techniques, the model can process
various data modalities retrieved from 4 RGB cameras, 4
DVS, and 1 LiDAR to deal with a diverse and dynami-
cally changing environment.

• We provide an adaptive loss weighting strategy to tackle
the imbalanced learning issue due to plenty of given
tasks. To be more specific, we adopt and modify an algo-
rithm called Gradient Normalization (GradNorm) [19] to
balance the learning process and show that the model
is achieving better performance in many aspects. We
perform an ablation study to understand the behavior and
influence of this algorithm.

• We conduct a comparative study between our best model
variant and the combination of some recent models com-
posed of both single-task and multi-task models that per-
form the same task. Based on the experiment result, we
show that our model maintains a better performance even
with much fewer parameters and smaller size. Therefore,
our model can inference faster with less GPU utilization.

To strengthen our findings, we conduct experiments on
four different datasets composed of three simulation datasets

gathered using CARLA simulator [20] and one real-world
dataset nuScenes-lidarseg [21], which is also used to illustrate
the implementation of the proposed model in a real-world
scenario. The remainder of this paper is organized as follows.
In Section II, we review and summarize related research that
inspires our works. In Section III, we describe our proposed
methods, including the model architecture and adaptive loss
weighting algorithm. In Section IV, we explain the dataset
used for experiments and how the experiment is conducted.
Then, we provide several points of ablation and comparative
study in Section V. Finally, the conclusion is presented in
Section VI followed by any possible research in the future.

II. RELATED WORK

In this section, we review several related works that are
inspiring this research. We consider adopting and modifying
some approaches to address challenges and issues in de-
veloping an autonomous driving perception model. We also
summarize how our methods are built based on these works.

A. Multi-task and Multi-modal Deep Learning

The idea of learning multiple tasks simultaneously is to
leverage shared features during the training process. In the
area of multi-task learning (MTL) for autonomous driving
perception, Lv et al. [22] develop a model that takes a single
RGB image to predict lane area and lane marking simultane-
ously. With a simple encoder-decoder style, the model is made
with one RGB encoder then branched into two task-specified
decoders. A similar approach has been done by Chen et al. [23]
where an MTL model called driving scene perception network
is used to perform real-time joint detection, depth estimation,
and semantic segmentation simultaneously. Moreover, Naka-
mura et al. [24] also conduct similar research to develop an
MTL model that performs instance segmentation and depth
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estimation in one forward pass. Meanwhile, a different ap-
proach is presented by Yan et al. [25] where the model takes
LiDAR point clouds to perform real-time occlusion-free road
segmentation, dense road height estimation, and road topology
recognition simultaneously. However, all of these approaches
rely on one kind of input modality only which may fail in
an unexpected environmental condition. Due to the diversity
of environmental conditions, an autonomous driving agent
cannot rely on one kind of sensor only. For example, during
a poor illumination condition, an RGB camera will likely
fail to capture the surrounding information. To address this
issue, another kind of sensor can be used as an alternative in
obtaining the information. Therefore, a sensor fusion strategy
may be needed to combine various data representations.

In the field of sensor fusion, Muresan and Nedevschi [26]
combine LiDAR and RGB cameras to create affinity mea-
surement and positional descriptor functions for autonomous
driving agent to perform multi-object tracking. Pre-trained
models are used to process LiDAR point clouds and RGB
images separately to obtain both LS and SS images. Then,
a hand-crafted feature extractor and aggregator are used to
perform final calculation of object tracking. Another applica-
tion of sensor fusion is presented by Dawar and Kehtarnavaz
[27] where a depth camera and an inertial sensor are used
for action detection and recognition in a continuous action
stream. To extract depth images and inertial signal features,
two separate deep learning-based encoders are used to process
each input. A convolutional neural network (CNN) is used to
handle the depth image, while a combination of CNN and
long-short term memory network is used to process inertial
signals. Each encoder is performing detection and recognition,
then a separate decision fusion model is used to make the
final decision by leveraging extracted features from each
encoder. However, this kind of late fusion strategy can lose
potentially useful information as the extracted features are
not shared among the encoders. To address this issue, Nie
et al. [28] develop a multi-modality fusion framework called
Integrated Multimodality Fusion Deep Neural Network (IMF-
DNN) based on the intermediate fusion strategy where the
extracted features are fused at some points at the network
architecture. Their model takes multiple input modalities com-
posed of LiDAR point clouds and RGB images, then fuses the
extracted features several times. As a result, the IMF-DNN
achieves higher performance in performing object detection
and end-to-end driving policy in a diverse environment.

In this research, we imitate the architecture style presented
by Lv et al. [22] that simply branches the decoder for each
task. Hence, we will have a task-specific decoder for each task
on each view. Then, we adopt the intermediate fusion strategy
proposed by Nie et al. [28] to process and combine multi-
modal inputs retrieved from RGB cameras, DVS, and LiDAR
by creating some fusion layers in the network architecture.

B. Bird’s Eye View and LiDAR Representation
By having a bird’s eye view projection (BEVP), an au-

tonomous driving agent will have a better scene understanding
whether in the form of point-dot LS image or fully recon-
structed BEVP image representations. In the field of BEVP,

Reiher et al. [29] use four semantic segmentation images to
construct BEVP. However, the model relies on other semantic
segmentation models to provide four SS images. Thus, the
entire process is not completed in one forward pass. With
a similar concept, Palazzi et al. [30] develop a model that
takes the front view RGB image along with its pre-predicted
bounding boxes coordinate to estimate the bounding boxes on
top view perspective. Both approaches may fail due to poor
illumination problems (night and heavy rain) since they only
use a monocular camera to provide the information. Another
similar approach is conducted by Mani et al. [31] where a
single model is used to estimate BEVP without any help from
other models. However, the model cannot estimate another
view since it takes the front RGB image as the only input.

Besides using several RGB cameras to capture multiple
views of the surrounding, a 360o LiDAR sensor can be used
to collect numerous point clouds that contain the necessary
information in a certain vertical field of view. Moreover, unlike
RGB cameras, LiDAR provides useful data that is not affected
by light illumination and weather conditions significantly.
Currently, there have been plenty of studies that conduct
research on processing LiDAR point clouds to fit the input
of a deep learning model. Point cloud-based models [32] [33]
are known as the pioneers in taking the LiDAR point clouds
directly, learning the feature, and predicting the label for each
point. This mechanism is quite simple but the model tends to
fail in capturing the local structure of an object. Then, in view-
based models [34] [35], LiDAR point clouds are projected
into several 2D frames with multiple perspectives of views,
then a simple convolution layer is used to process each frame.
However, the number of possibilities of views can be large
and lead to an expensive computational cost. Thus, an effective
way to pre-process LiDAR point clouds is needed to reduce the
computational load while still preserving useful information
for the learning process.

In the BEVP task where surrounding objects are projected
into top view perspective only, any unnecessary projection can
be eliminated to save computational cost. Imad et al. [36]
project raw LiDAR point clouds into a top view RGB image
that has three channels so that a transfer learning method
from various pre-trained models can be applied to perform
the BEVP task. Although the heatmap coloring technique is
used to differentiate the data, a lot of information still can be
lost due to the limited scale. Then, an improved pre-processing
approach is presented by Yang et al. [37] where LiDAR point
clouds are stored into a 3D tensor with the height information
of the point cloud kept as the third dimension like channels in
an RGB image. Thus a simple 2D convolution with a larger
number of filters can be applied to process each channel. Using
a proposed model called PIXOR, the pre-processed LiDAR
data is used to perform top view object detection. This kind
of data representation strategy is adopted by Zhang et al. to
perform the top view LS task using the proposed model called
PolarNet [38]. Finally, in line with the BEVP task, Chen et
al. [39] develop a model that takes the top view LS image to
perform the BEVP task. However, it means that another model
is needed to support the LS task first.

In this research, we also utilize all front, left, right, rear

1558-0016 ©2022 IEEE. This is the accepted version of the manuscript.
The published version can be accessed and cited at https://ieeexplore.ieee.org/document/9712213

https://ieeexplore.ieee.org/document/9712213


4 Natan and Miura: Towards Compact Autonomous Driving Perception with Balanced Learning and Multi-sensor Fusion

RGB
3×128²

DVS
2×128²

(4x)16x128² (4x)16x128²

(4x)32x64² (4x)32x64²

64×
32²

64×
32²

192×
32²

128×
16²

64×
32²

64×
32²

32×64² 32×64²

96×64²96×64²

16×128² 16×128²

SS
23×128²

DE
1×128²

48×128²48×128²

SS
23×128²

DE
1×128²

LS
23×128²

16×128² 16×128² 16×128²

32×64² 32×64² 32×64²

128×
64²

64×
32²

64×
32²

192×
32²

128×
16²

64×
32²

32×64²

96×64²

16×128²

BEVP
9×128²

48×128²

LiDAR
C×128²

16x128²

32x64²

32×64²

96×64²

16×128²

LS
23×128²

48×128²

128×
64²

64×
32²

128×
64²

64×
32²

64×
32²

128×
64²

16×128² 16×128²

32×64² 32×64²

16×128²

32×64²

1st Bottleneck  2nd Bottleneck  

Convolution block
Skip connection
Point-wise conv. + final act.
Feature map
Concatenation
Output
Input
Dropout layer

Fig. 2: Network Architecture. To be noted, each view (Front, Left, Right, and Rear) on RGB, DVS, SS, and DE have its own
encoder, while LiDAR and LS only have one encoder as there is only one view (Top). The text written inside each box is
the tensor size in C × S2, where C is the number of channels and S2 is the spatial dimension (height × width). For LiDAR
encoder, the network can take 1 or 15 layers of pre-processed LiDAR point clouds (see Subsection IV-C).

images to support both LS and BEVP tasks as demonstrated
by Reiher et al. [29]. Meanwhile, in pre-processing LiDAR
point clouds, we combine two different techniques presented
by Imad et al. [36] and Yang et al. [37]. Therefore, we will
have a 3D tensor that stores all point clouds into two forms
of representations that contain more useful information.

C. Multi-loss Weighting

A proper loss weighting strategy plays an important role
in the training process of an MTL model, especially in
tackling the imbalanced learning issue due to heterogeneous
tasks with various loss functions. Cipolla et al. [40] conduct
research in multi-loss weighting on an MTL model that
performs scene understandings such as semantic segmentation,
instance segmentation, and depth regression simultaneously.
By experimenting on an MTL dataset called Tiny Cityscapes
[41], they show that homoscedastic task uncertainty is an
effective way to perform loss weighting on several tasks.
Meanwhile, a different approach is presented by Chen et
al. [19] where a loss weighting algorithm called Gradient

Normalization (GradNorm) is proposed to control the training
dynamics by manipulating the gradient during the training
process. By adjusting the gradient signal, the learning conflict
from different tasks can be minimized.

In this research, we adopt GradNorm [19] to deal with the
imbalanced learning problem caused by plenty of tasks with
different characteristics. We also do some modifications to the
algorithm to meet our model needs.

III. METHODOLOGY

In this section, we explain the details of our proposed
methods which are inspired by some related works reviewed
in Section II. First, we describe the model architecture and
the proper loss and metric formulation. Then, we explain how
we develop the adaptive loss weighting algorithm to tackle the
imbalanced learning issue.

A. Proposed Model

As shown in Figure 2, we use a common encoder-decoder
style with a specific encoder and decoder for each input and
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output as demonstrated by Lv et al. [22]. Then, we add several
skip connections to connect the feature maps on the encoder
side with their symmetric feature maps on the decoder side
inspired by the famous U-Net architecture [42]. This mecha-
nism aims to enhance the model performance by leveraging
combined feature maps on the bottleneck with the specifically
extracted features from each decoder. Each RGB encoder is
connected and concatenated to each semantic segmentation
(SS) decoder that has the same view and spatial dimension.
Rich color, shape, and much more extra information contained
in the RGB image can be helpful for segmentation problems.
Meanwhile, the DVS input is specifically used to support the
depth estimation (DE) task by connecting and concatenating
each pair of symmetric encoder-decoders in a similar way to
the RGB-SS pair. DVS image can be helpful for estimation
problems especially during poor illumination conditions (e.g.
night) since it can contain contrast information even if there is
only a small brightness change captured by the sensor. Then,
we connect the encoder of pre-processed LiDAR point clouds
to the LiDAR segmentation (LS) decoder inline with the LS
encoder to the bird’s eye view projection (BEVP) decoder as
they have the same top perspective of view. Similar to Chen et
al. [39], our model performs BEVP by leveraging LS image.
However, instead of taking the LS image directly as its input,
we feed the model with the raw LiDAR point clouds that
have been pre-processed to perform LS, then utilize the LS
output to perform the BEVP task. Thus, there is no need to
use another model to specifically support the LS task first. Our
model is also leveraging 4 views of SS images as inspired by
Reiher et al. [29] along with 4 views of DE images to support
the LS encoder in performing BEVP. Finally, by following
the intermediate fusion technique presented by Nie et al. [28],
we create two bottlenecks in the form of convolution blocks
to fuse and process multiple extracted feature maps from
various input encoders. The 1st bottleneck is used to store
the extracted latent space from various inputs (RGB, DVS,
and LiDAR) and used to perform SS, DE, and LS tasks.
Meanwhile, the 2nd bottleneck is used to store the extracted
information from those tasks and perform BEVP as the final
task. Hence, a compact network architecture that performs
multiple tasks in one forward pass can be achieved.

The detailed explanation about the network architecture
shown in Figure 2 is as follows. Each red line represents the
skip connection that connects each pair of symmetric encoder-
decoders followed by a concatenation process. The dark green
line represent a common convolution block that consists of
2 × (3 × 3 convolution layer + batch normalization [43] +
ReLU activation [44]) and followed with a 2×2 max-pooling
layer for encoder path or 2×2 bilinear upsampling for decoder
path. On the encoder path, the spatial dimension of the tensor
is reduced by half while the number of feature maps in the
channel axis is doubled each time it passes the convolution
block. Meanwhile, on the decoder path, the spatial dimension
is doubled while the number of feature maps is reduced by half
gradually. Finally, the blue line represents a point-wise 1× 1
convolution layer that reduces the channel so that the number
of output elements will match with the number of channels
of the ground truth. Then, a sigmoid layer is used to perform

point-wise classification for SS, LS, and BEVP tasks and a
ReLU layer for point-wise regression in a positive normalized
range of 0 to 1 for the DE task. To prevent overfitting, we
add a dropout layer [45] with a drop rate of p = 0.5 on each
convolution block at the center of the architecture.

B. Loss and Metric Formulation

To train the model and monitor its performance, loss and
metric functions are needed to be formulated carefully. Loss
functions are used to update the model weights while metric
functions are used to monitor the model performance. There-
fore, we use the metric scores to decide whether the training
must be stopped or the learning rate should be reduced. To be
noted, comparing loss values will not give a fair comparison
due to different loss weights computed by the adaptive loss
weighting algorithm. Hence, we use several metric scores as
their calculation remains the same. As for the depth estimation
(DE) loss (LDE), we calculate Huber loss as in (1).

LDE =
1

V

V∑
i=1

1

N

N∑
j=1

zij , (1)

where zij is given by (2).

zij =

{
0.5(ŷij − yij)

2 if |ŷij − yij | < δ

δ(|ŷij − yij | − 0.5δ) otherwise
(2)

We average the loss across all tensor elements N on all
views V = 4. The number of N is also equal to the number of
elements in pre-processed ground truth for DE task IDE (see
Subsection IV-C). Then, yij is the value of jth element of the
ground truth IDE with view i, while ŷij is the predicted value
of jth element of the predicted depth output with view i after
ReLU activation. Huber loss is widely used and suitable for the
DE task as it takes the advantage of both mean squared error
(MSE) and mean absolute error (MAE) based on the prediction
results. We set δ = 0.5 as the threshold for the Huber loss to
start to curve like MSE if |ŷij − yij | < δ or constantly have a
large gradient which is the same as MAE if |ŷij − yij | ≥ δ.
Meanwhile, for the rest segmentation-related tasks, we use the
combination of standard binary cross entropy (BCE) and Dice
loss as in (3) to calculate LSS , LLS , and LBEV P .

L{SS,LS,BEV P} =
1

V

V∑
i=1

(
1

N

N∑
j=1

yij log(ŷij) + (1− yij)

log(1− ŷij)

)
+

(
1− 2|ŷi ∩ yi|

|ŷi|+ |yi|

)
(3)

Similar to the Huber loss function, in the BCEDice loss
function, the final loss calculation is also averaged across all
tensor elements N and all output views V = 4 for semantic
segmentation (SS) task and V = 1 for LiDAR segmentation
(LS) and bird’s eye view projection (BEVP) tasks. Then, yi
is the ground truth ISS or ILS or IBEV P with view i and ŷi
is the predicted output of view i. Finally, the total loss can be
calculated by multiplying each loss Li with a loss weight wi
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and summing all of them. In addition, to prevent overfitting, a
weight decay [46] with λ = 0.0001 is used to penalize model
complexity by multiplying the sum-squared of model weights
W and added to the total loss as in (4).

Ltotal = λΣW2 +

T∑
i=1

wiLi (4)

To be noted, Li is an element in a set of losses
{LDE ,LSS ,LLS ,LBEV P }. Then, for the metric functions,
we use MAE (5) for depth estimation (DE) task and intersec-
tion over union (IoU) (6) for segmentation-related tasks.

MAEDE =
1

V

V∑
i=1

1

N

N∑
i=1

|ŷij − yij | (5)

IoU{SS,LS,BEV P} =
1

V

V∑
i=1

|ŷi ∩ yi|
|ŷi| ∪ |yi|

(6)

Finally, the total metric (TM) is calculated by summing all
metric scores as formulated in (7). To be noted, we use TM to
determine the best model later as it represents overall model
performance in all tasks. The total loss (4) cannot be used for
comparison as it is affected by multiplication of loss weights
and weight decay which are varied amongst models. Then, in
order to know the discrepancy between tasks and shows how
balanced the performance across all tasks, we calculate the
metric variance (MV) within MAEDE , 1−IoUSS , 1−IoULS ,
and 1− IoUBEV P with (8).

TM = MAEDE + (1− IoUSS)

+ (1− IoULS) + (1− IoUBEV P )
(7)

MV =
1

T

T∑
i=1

(
Mi −

TM

T

)2

, (8)

where Mi is the metric score of task-i and TM
T is the mean

of all metric scores with total tasks T = 4. Keep in mind that
the lower TM and MV scores mean the better and balanced
the model performance.

C. Adaptive Loss Weighting

An adaptive loss weighting strategy can be used to deal
with the imbalanced learning issue due to plenty of given
tasks with different characteristics. In this research, we adopt
the GradNorm algorithm [19] and do some modifications
to match our proposed model. The overall process of the
modified GradNorm (MGN) algorithm can be seen in Figure
3. Basically, the total loss for a multi-task model can be
computed with (9).

L(t) =
T∑

i=1

wi(t)Li(t), (9)

where Li is the loss function of task-i from a T number
of tasks and a static loss wi is used to balance the learning
process at training step t. Usually, the loss weights are tuned
empirically which results in a huge computational cost to find
the best set of loss weights. To address this issue, the Grad-
Norm algorithm [19] is invented to learn the loss weight wi

by adjusting the gradient norms dynamically so that different
tasks can be trained at similar rates. However, in their original
paper, this algorithm is used to balance the learning process
of the multi-task model of three tasks with only one input
and one bottleneck of shared layers. Meanwhile, our model
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has four tasks with three data modalities, five different views
as the input, and two bottlenecks of shared layers. Besides
that, the loss weights are updated on each step and cause a
huge computational load. We solve this issue by modifying
the update process only at the last step t = s for each epoch
which means that there is only one update for one epoch. The
number of maximum step s is equal to the number of samples
in the training set divided by the batch size. To be noted, the
number of training samples on each dataset is different which
means that the maximum step s can be varied.

Before the loss weights are updated during the training
phase on each epoch at step t = s, there are several quantities
to be defined first with respect to the gradients that will be
manipulated as follows:

• Subsets of weights W from entire model weights W
where the algorithm will be applied. We pick 2 subsets
of weights as there are 2 bottlenecks in the network
architecture shown in Figure 2. Mathematically, W (s)
selection is expressed as (10).

W (s) = {W1(s),W2(s)} ⊂ W(s) (10)

Different from the original GradNorm paper [19], we
pick W1(s) and W2(s) from the first layer of the 1st

and 2nd bottleneck respectively. These layers are chosen
since they have rich information of shared latent space
from the concatenation of multiple feature maps.

• The L2 norm of the gradient of the weighted single-task
loss (wi(s)Li(s)) with respect to the chosen subset of
weights W (s) that can be calculated with (11).

G
(i)
W (s) = ∥∇W (wi(s)Li(s))∥2 (11)

Based on the network architecture shown in Figure 2,
the gradient of the weighted single-task loss for BEVP
is respected to W (s) = W2(s), while the others are
respected to W (s) = W1(s). For further computation
process, we need to compute GW (s) which is the average
of G(i)

W (s) across all tasks T with (12).

GW (s) =
1

T

T∑
i=1

G
(i)
W (s) (12)

• The ratio between Li at the last step t = s and first step
t = 0 which can be computed with (13).

L̄i(s) =
Li(s)

Li(0)
(13)

Concisely, the loss ratio L̄i(s) is also a measure of the
inverse training rate of task-i where a lower ratio means
a faster rate of learning task-i.

• The relative inverse training rate of task-i which can be
calculated with (14). This variable is used to balance
gradients during the training process.

ri(s) =
L̄i(s)

1
T

∑T
i=1 L̄i(s)

(14)

The higher relative inverse training rate ri(s) means the
higher gradient magnitude for task-i which results in the
task being learned faster.

Algorithm 1: Training with MGN
Initialize model weights W with kaiming init [47]
Set initial loss weights wi(0) = 1∀i
Set asymmetry alpha α = 1.5
Calculate maximum training step s*
for training step t = 0 to s do

Standard forward pass:
• Input batch x(t) and get prediction ŷ(t)
• Compute each single-task loss Li(t)
• Compute total loss L(t) with (9)

if t = 0 then
Set initial task loss Li(0) = Li(t)

else if t = s then
Pick W (s) with (10)
Compute G

(i)
W (s) with (11) for each task-i

Compute GW (s) with (12)
Compute L̄i(s) with (13) for each task-i
Compute ri(s) with (14) for each task-i
Compute G(i)

W (s) with (16)
Compute LMGN (s) with (15)
Compute MGN gradients ∇wiLMGN (s)
Update each wi(s) using ∇wiLMGN (s)
Normalize new wi(s) with (17)

end
Standard backward pass:

• Compute gradients ∇WL(t)
• Update network weights W(t) using ∇WL(t)

end
*Maximum training step s can be calculated by dividing the
total training samples with batch size. It can be varied as the
number of training samples is different on each dataset.

The detailed steps of the modified GradNorm (MGN) al-
gorithm can be seen on Algorithm 1. To be noted, there are
only two training steps in one epoch to be considered for
MGN computation which are the first step t = 0 and the
last step t = s. Li(0) is very crucial especially at the first
epoch of the training process. Thus, proper model weights
W initialization and task loss Li formulation need to be
considered carefully. Furthermore, both depth estimation (DE)
and semantic segmentation (SS) tasks have multiple inputs
from 4 different views while LiDAR segmentation (LS) and
bird’s eye view projection (BEVP) tasks only have one input
from a top perspective. Thus, the Li for both DE and SS tasks
are averaged across all views first before computing Li(0) and
Li(s). This means that the loss weight wi for each DE task and
SS task will be the same on any view. The MGN algorithm is
deployed as a loss function that computes the MAE between
the target and actual gradient norms as in (15) for each task
in every last step t = s on each epoch.

LMGN (s) =

T∑
i=1

∣∣∣G(i)
W (s)−G

(i)
W (s)

∣∣∣ , (15)

where the loss is summed across all tasks T with the target
gradient G(i)

W (s) is given by (16).
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Fig. 4: Sensors Placement. Both RGB and DVS cameras are
placed at four different positions, while the 360o LiDAR
sensor is placed at the top of the ego vehicle. Each sensor
has a specific horizontal and vertical field of view.

G(i)
W (s) = GW (s)ri(s)

α (16)

We set the asymmetry α = 1.5 as an additional parameter
to control the balancing rate. The higher α value means the
stronger balancing enforcement which is usually used if tasks
are significantly different [19]. Then, we use stochastic gra-
dient descent (SGD) algorithm [48] to compute the gradients
∇wiLMGN (s) and update the loss weights wi(s). We set the
initial update rate ηMGN0 = 0.1 and reduce it by half until a
minimum value of ηMGNmin = 0.0001 if there is no drop on
total metric score in validation dataset in 4 epochs in a row.
Finally, each loss weight wi(s) is normalized with (17) so that
the sum of all loss weights will always equal to T .

winew
(s) =

wi(s)∑T
i=1 wi(s)

T (17)

IV. EXPERIMENT SETUP

In this section, we describe the dataset used for experiments
which consist of 3 simulation datasets and 1 real-world dataset.
Then, the pre-processing steps are explained to understand the
data representation. We also provide a brief explanation about
the training configuration.

A. Simulation Data

We use CARLA simulator [20] to generate simulation
datasets to train our model. We collect a large amount of
data composed of RGB images, DVS arrays, and LiDAR
point clouds as the inputs and semantic segmentation (SS)
images, depth estimation (DE) images, LiDAR segmentation
(LS) images, and bird’s eye view projection (BEVP) images as
the outputs. In this research, we create three different datasets
named dataset A, B, and C for the experiment and strengthen
our justification. In dataset A, we gather the simulation data
from map ’town01’ as the training set and ’town02’ for both

TABLE I: Data Generation Setting

Parameter Configuration
Train : Val : Test ratio 3 : 1 : 1
Total data 2000 (set A and B), 10000 (set C)
Maps used 2 (set A and B), 5 (set C)
Simulation time Morning, noon, evening, and night
Weather Sunny, rainy, cloudy, and foggy
Non-player
characters

Other vehicles (truck, car, bicycle,
motorbike) and pedestrians

Object class for SS
and LS (23 classes)

Unlabeled, building, fence, other,
pedestrian, pole, road lane, road,
side walk, vegetation, other vehi-
cles, wall, traffic sign, sky, ground,
bridge, rail track, guard rail, traffic
light, static object, dynamic ob-
ject, water, terrain

Object class for
BEVP (9 classes)

Road, road lane, road centerline,
other vehicles, ego vehicle, green
traffic light, yellow traffic light,
red traffic light, pedestrian

CARLA version 0.9.10.1

validation and test sets. Then, in dataset B, we collect the
training set from ’town02’ and the rest validation and test
sets from ’town01’. Meanwhile, in dataset C, we generate
all simulation data from all maps (’town01’ to ’town05’) for
training, validation, and testing sets. Each map has different
characteristics and contains various objects.

To obtain more information about the surroundings, several
sensors are mounted on the ego vehicle as shown in Figure
4. We place RGB and DVS cameras at four positions on the
ego vehicle, which are front (F), left (L), right (Ri), and rear
(R). Each camera has a 90o horizontal and vertical field of
view, 20o upward rotation, and original resolution of H ×
W = 128 × 128. Then, a 360o LiDAR sensor with 64 lasers
and 32 meters of the maximum range is placed at the top
(T) of the vehicle. The LiDAR lasers are vertically spread
between the range of −30o to 20o from the horizontal line. The
same configuration is also applied to get the ground truth data
for each task. During the data gathering process, we create a
realistic condition by changing the weather dynamically where
the environment can be sunny, rainy, foggy, morning, noon,
evening, and night. Each condition also varies on a scale of
0 to 100% and can be combined. In addition, we also spawn
non-player characters such as pedestrians and other vehicles to
mimic the real situation on the road. The detailed information
of the data generation setting can be seen in Table I.

B. Real-world Scenario

To illustrate how our model can be deployed in a real-
world scenario, we also use nuScenes-lidarseg dataset [21]
as the fourth dataset in our experiment. However, this dataset
has a different sensor configuration and is not providing DVS
images and ground truth for both semantic segmentation (SS)
and depth estimation (DE) tasks. Thus, we consider modifying
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Fig. 5: A set of pre-processed nuScenes-lidarseg samples. From left to right views: L-F-Ri-R while LiDAR, LS, and BEVP
only have a top view. There are no DVS images for model inputs so all DE decoders will retrieve extracted RGB feature
maps only. Since there are no ground truths given for DE and SS tasks, LiDAR point cloud’s associated class and distance
information are used to create the ground truth for both tasks.

and pre-processing the dataset to meet the model needs. First,
we use front-left and front-right images as the replacement
for left and right images which are not provided in nuScenes-
lidarseg. As there are no DVS images for the model inputs,
we remove all DVS encoders in the network architecture
and branch each RGB encoder to support both SS and DE
decoders. Therefore, the model will take RGB inputs only to
perform DE and SS tasks. Moreover, this dataset does not
come with the ground truth for SS and DE tasks. Thus, we
use the provided LiDAR point clouds associated class and
distance information to create ground truths for SS and DE
tasks. We create SS and DE ground truths using the point
clouds that are shown on each camera’s perspective of view.
Concisely, we plot each point cloud’s associated class data
as the SS ground truth and distance data as the DE ground
truth. Then, to fill the gap between plotted frame’s pixels,
we give neighboring pixels the same class or value as the
filled pixel. With this mechanism, we can obtain nearly similar
ground truths as retrieved from the CARLA simulator. To be
noted, we also resize all images to have a spatial dimension of
H×W = 128×128 which is the same as in datasets A, B, and
C. Thus, there is no need to make any further modifications
to the model input size. Finally, since nuScenes-lidarseg has
32 possible object classes to be recognized, therefore, the
number of channels of semantic segmentation (SS), LiDAR
segmentation (LS), and bird’s eye view projection (BEVP)
outputs become C = 32. A set of nuScenes-lidarseg samples
can be seen in Figure 5.

Originally, the nuScenes-lidarseg dataset has 1000 driving
scenes obtained from Boston and Singapore that have dense
traffic and challenging situations. However, we only use
the original ’trainval’ set (850 scenes) for our experiment.
Meanwhile, the original ’test’ set (150 scenes) is excluded
since the ground truth is not publicly available. Hence, we
cannot measure the performance of the model. The nuScenes-
lidarseg’s ’trainval’ set has a total sample of 34149 from
850 scenes that are different from one another. We divide
the original ’trainval’ set into train, validation, and test sets
with the ratio of 3:1:1 (the same as in datasets A, B, and C)

based on the number of scenes so that the sample will be
completely different on each set. Thus, there are 510 scenes
(20418 samples) for training, 170 scenes (6873 samples) for
validation, and 170 scenes (6858 samples) for testing.

C. Data Pre-processing and Representation

RGB image is originally retrieved as IRGB ∈
{0, ..., 255}3×128×128 representing the set of 8-bit pixel
value in the form of RGB channel (C) × height (H) × width
(W ). Different from IRGB , the DVS array is retrieved as
ADV S ∈ RN×4 where N is the total number of pixels that
are considered to have a brightness change in one simulation
step and R is an array with four elements consisted of
timestamp, pixel’s x-coordinate, pixel’s y-coordinate, and
pixel’s polarization. The pixel’s polarization can be positive
or negative depending on the brightness change. Meanwhile,
a set of LiDAR point clouds is retrieved as ALID ∈ RM×4

where M is the total number of point clouds retrieved in
one simulation step and R is an array with four elements
composed of point’s x-coordinate, point’s y-coordinate,
point’s z-coordinate, and cos of incident angle (cos(θ)).

As for the model input, we normalize all RGB images in
a scale of 0 to 1 expressed as IRGB ∈ {0, ..., 1}3×128×128.
Since the model already takes multiple inputs of views, there
is no need to feed the model with a bigger input size. Thus,
it can reduce the computational load during both training and
validation processes. To meet the input shape of the model,
both ADV S and ALID need to be pre-processed first due to the
possibility of numerous N and M which are affected by the
simulation condition at a time. Thus, to deal with this issue,
we pre-process both ADV S and ALID to become a 3D tensor
with a fixed shape. With a maximum x,y coordinate range of
(127, 127), we project ADV S into IDV S ∈ {0, 1}2×128×128

with the x,y-coordinate takes place on the spatial dimension
(H×W = 128×128) and the polarization takes place on the
channel dimension C = 2. In the channel axis, the positive
polarization takes place on the first channel while the negative
polarization takes place on the second channel of IDV S . We
convert the polarization status into a value of 0 or 1 with
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Fig. 6: LiDAR point clouds pre-processing. All point clouds are mapped into a tensor ILID ∈ {0, ..., 1}15×128×128 where each
layer holds the height information that spreads within an interval of -2 meter (lowest point) to 11 meters (highest point).

(18). Meanwhile, the timestamp attribute in ADV S is used to
synchronize with other sensor data.

IDV Sij
=

{
1 if there is polarization record in ADV Sxy

0 otherwise,
(18)

where IDV Sij is the i,j-coordinate derived from ADV S’s
x,y-coordinate. Meanwhile, for the LiDAR point clouds, we
propose two different techniques to pre-process the LiDAR
point clouds and perform an ablation study to understand their
influence. The first method ignores ALID’s z-coordinate and
projects the LiDAR point clouds into a tensor with top view
perspective ILID ∈ {0, ..., 1}1×128×128 with (19). This kind
of input representation is similar to Imad et al. [36], however,
instead of using heatmap color (in 3 channel RGB), we only
use one channel to store the cosine of the incident angle
(cos(θ)) of each point cloud. Therefore, a newly formed tensor
ILID will likely form a heat map-like gray image.

ILIDij =

{
cos(θ) if there is a point record in ALIDxy

0 otherwise
(19)

To be noted, the ILID’s i,j-coordinate has been shifted and
scaled from the original ALID’s x,y-coordinate. The center
(x, y) = (0, 0) of ALID is at the top of the ego vehicle and the
range of x and y-axis are -32 to 32 meters (the maximum range
of LiDAR). Therefore, we need to shift and scale the ILID’s
i,j-coordinate so that the center is at (i, j) = (64, 64) and
the minimum and maximum coordinate are at (i, j) = (0, 0)
and (i, j) = (127, 127) respectively. The shifting and scaling
process of the i,j-coordinate from the original x,y-coordinate
can be done with (20) and (21) respectively.

ILIDi
=

⌊
ALIDx

− (−32)

32− (−32)
× 127

⌉
(20)

ILIDj
=

⌊
ALIDy

− (−32)

32− (−32)
× 127

⌉
(21)

Both ILIDi and ILIDj represent the ILID’s i,j-coordinate
while ALIDx

and ALIDy
represent ALID’s x,y-coordinate.

Meanwhile, 127 is set to be the highest point of ILID’s i,j-
coordinate. Then, we also give a value to the nearest pixels
from ILIDij

as the same as the pixel’s value of ILIDij
itself.

Thus, the pre-processed ILID will have a better area coverage
from the top perspective of view. However, the first method
can lose points that have the same ALID’s x,y-coordinate but
with a lower ALID’s z-coordinate since the method only stores
one point with the highest ALID’s z-coordinate.

In the second LiDAR pre-processing method, we adopt the
LiDAR pre-processing technique presented by Yang et al. [37]
that takes the ALID’s z-coordinate into account. Then, we
stack the pre-processed point clouds with the data from the first
method to provide more rich information. The visualization of
this method can be seen in Figure 6. Concisely, the second
method projects the LiDAR point clouds into a 3D tensor
ILID ∈ {0, ..., 1}15×128×128. Here, we set the number of
channels n(k) = 15 where k ∈ {0, ..., 14} based on the
vertical field of view and the maximum range of the LiDAR
sensor. As can be seen in Figure 4, the sensor has a 30o view
below and 20o view above the horizon line. Since the sensor
is placed on the top of the ego vehicle which is 2 meters
from the ground, then the lowest point of the point cloud is
equal to -2. Meanwhile, the highest point of the point cloud
can be calculated with ⌈sin(20) × 32⌉ = 11. Therefore, we
set n(k) = 15 where the first 14 channels (k ∈ {0, ..., 13})
are used to store point clouds based on their height defined
by ALID’s z-coordinate which are spreading from the lowest
point of -2 meter to the highest point of 11 meters. Then, the
last channel (k = 14) is used to store all flattened point clouds
from the first method. We map the ALID’s z-coordinate into
k channels with (22).

ILIDk
=

⌊
ALIDz

− (−2)

11− (−2)
× 13

⌉
, (22)

where ILIDk
is the ILID’s k-coordinate (channels) and ALIDz

is the original ALID’s z-coordinate. The multiplier of 13 is
used to ensure that there are no point clouds stored in the
last channel (k = 14) as it has been reserved to store all
flattened point clouds from the first method. The maximum
and minimum values of ALIDz

are set to 11 and -2 for all
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recorded point clouds so that the scale for all pre-processed
ILID will be the same. Thus, the network can easily learn to
segment objects based on their height even if the maximum
point of each recorded point cloud is different. Finally, similar
to the first method, we also give the same value to the nearest
pixels around ILIDijk

. To be noted, if there are 2 points or
more with different ALID’s x,y,z-coordinate but have the same
ILID’s i,j,k-coordinate after pre-processing, only the point that
has the highest ALID’s z-coordinate that can take place on the
ILID’s i,j,k-coordinate to prevent multiple data points stored
in one coordinate. Therefore, having a large number of k
channels would be better since there is more space to store
point clouds. However, processing a larger input would also
cost more computational time.

On the output side, we read the depth estimation (DE)
ground truth as a tensor IDE ∈ {0, ..., 1}1×128×128. Thus,
the output layer of the model for the DE task will only have
1 channel with the spatial dimension of (128 × 128) that
predicts normalized depth value within the range of 0 to 1.
With this mechanism, we can use simple ReLU activation
for the final output layer of the DE decoder. Meanwhile,
the original semantic segmentation (SS), LiDAR segmentation
(LS), and bird’s eye view projection (BEVP) ground truths are
retrieved as I{SS,LS,BEV P} ∈ {0, ..., 255}3×128×128 which
are following the color palette in Cityscapes dataset [41].
To meet the needs of the network architecture, especially
on its output layers for segmentation-related tasks (SS, LS,
and BEVP), we perform one hot encoding process to convert
the 8-bit RGB representation. As a result, each ground truth
become ISS ∈ {0, 1}23×128×128, ILS ∈ {0, 1}23×128×128, and
IBEV P ∈ {0, 1}9×128×128. Therefore, a sigmoid activation
can be used at the output layer of SS, LS, and BEVP decoders.
The number of classes in the CARLA simulation dataset is
9 for the BEVP task and 23 for both SS and LS tasks as
mentioned in Table I. Meanwhile, in the real-world nuScenes-
lidarseg dataset, the number of classes is 32 for all SS, LS,
and BEVP tasks as mentioned in Subsection IV-B. Hence, the
channel axis C of I{SS,LS,BEV P} has also become 32.

D. Training Configuration
We use two GPUs, the NVIDIA RTX 2080 super and

GTX 1080 Ti separately to train the model along with its
variation described in Section V. In this research, we develop
the model entirely from scratch using PyTorch [49]. We do
not use any pre-trained network to perform transfer learning
nor fine-tuning. As mentioned in Subsection III-C, weights
initialization can be crucial as it affects Li(0) especially at
the early epoch of the training process. Therefore, the kaiming
initialization strategy [47] is used to initialize the entire model
weights W . Then, a small batch size of 6 is enough since
the model already takes multiple views of inputs. Similar to
the loss weights updates, we use SGD [48] with momentum
µ = 0.9 to update the model weights during the training
process. We set the initial learning rate η0 = 0.1 and reduce it
by half gradually until ηmin = 0.00001 if there is no drop on
the validation total metric (TM) score in 4 epochs in a row.
We also stop the training process automatically if there is no
drop in validation TM score in 25 epochs in a row.

V. RESULT AND DISCUSSION

To evaluate our proposed methods, ablation and comparative
study are conducted by comparing all model variants along
with the combination of single-task model and multi-task
model for all given tasks. For depth estimation (DE) and
semantic segmentation (SS) tasks, we compare our models
with the multi-task GradNorm model [19]. In the LiDAR
segmentation (LS) task, we compare our model with PolarNet
[38] that performs the same top view LiDAR segmentation.
Finally, for the bird’s eye view projection (BEVP) task, we
replicate the works by Chen et al. [39] and perform some
modifications in their model’s final output layer to be a point-
wise convolution layer for one-hot encoded prediction so that
we can calculate the IoU and perform a fair comparison.
The best model is defined by the lowest total metric score
as formulated with (7). Moreover, as mentioned in Section
IV, we compare all models on 3 simulation datasets generated
by CARLA simulator [20] and one real-world dataset from
nuScenes-lidarseg [21]. Concisely, there are 3 points that will
be disclosed in this research as follows:

• The influence of providing 15-layer LiDAR data into the
model. In this experiment, we compare two models where
one model takes 1 layer of LiDAR data (1L) and the other
takes 15 layers of LiDAR data (15L). Then, we observe
its influence based on the TM score.

• The influence of using the MGN algorithm on the MTL
model during the training process. By using the MGN
algorithm, the model is expected to have better perfor-
mance as the imbalanced learning problem will be solved
by giving appropriate weight to each loss function. There-
fore, to understand its effectiveness, a comparative study
is conducted on the model with adaptive loss weights
(15L+MGN) and the model with static loss weights (15L
with wi = 1∀i). We also provide a separate subsection to
discuss the behavior of this algorithm.

• A comparative study with the combination of some recent
models. We compare all of our model variants with 2
single-task models and 1 multi-task model which are
PolarNet [38] for LS, Chen et al [39] for BEVP, and
GradNorm model [19] for multi-task DE and SS. Besides
calculating all metric scores, we also compute the number
of model parameters, model size, GPU memory usage,
and inference speed to justify the model efficiency.

A. 1 Layer vs 15 Layers of LiDAR Representation

LiDAR point clouds contain a z-coordinate that represents
the height of the object captured by the LiDAR lasers. The idea
of our second LiDAR pre-processing method is to differentiate
the object based on height data so that the model can leverage
this useful information during the training process. As shown
in Figure 6, each layer contains a specific object based on
its height. For example, the lower layer holds objects which
are mostly on the ground such as roads, sidewalks, etc. Then,
the middle layer holds other vehicles, pedestrians, etc. Then,
the upper layer holds tall objects such as buildings, trees, etc.
Finally, stacking all point clouds pre-processed by the first
method into the last layer will provide more information.
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TABLE II: Performance Comparison on Test Sets

Dataset Model MAEDE IoUSS IoULS IoUBEV P TM MV

Chen et al. [39] - - - 0.654 ± <0.001
PolarNet [38] - - 0.483 ± <0.001 - 1.430 0.024

Set GradNorm† [19] 0.113 ± <0.001 0.546 ± 0.002 - -
A 1L 0.090 ± <0.001 0.619 ± 0.001 0.406 ± <0.001 0.613 ± <0.001 1.452 0.032

15L 0.083 ± <0.001 0.636 ± 0.002 0.424 ± <0.001 0.575 ± <0.001 1.448 0.032
15L+MGN 0.084 ± <0.001 0.627 ± 0.002 0.470 ± <0.001 0.594 ± <0.001 1.393 0.027

Chen et al. [39] - - - 0.567 ± 0.003
PolarNet [38] - - 0.723 ± <0.001 - 1.160 0.016

Set GradNorm† [19] 0.095 ± <0.001 0.645 ± 0.003 - -
B 1L 0.096 ± <0.001 0.675 ± <0.001 0.621 ± 0.001 0.589 ± 0.002 1.211 0.015

15L 0.095 ± <0.001 0.682 ± <0.001 0.680 ± <0.001 0.603 ± 0.001 1.131 0.013
15L+MGN 0.099 ± <0.001 0.679 ± <0.001 0.704 ± <0.001 0.630 ± 0.002 1.086 0.011

Chen et al. [39] - - - 0.637 ± <0.001
PolarNet [38] - - 0.735 ± 0.001 - 0.976 0.013

Set GradNorm† [19] 0.055 ± <0.001 0.706 ± <0.001 - -
C 1L 0.069 ± <0.001 0.751 ± <0.001 0.573 ± 0.001 0.606 ± <0.001 1.138 0.020

15L 0.062 ± <0.001 0.765 ± <0.001 0.645 ± 0.001 0.602 ± <0.001 1.050 0.017
15L+MGN 0.063 ± <0.001 0.756 ± <0.001 0.678 ± <0.001 0.630 ± <0.001 0.999 0.014

Chen et al. [39] - - - 0.788 ± <0.001
PolarNet [38] - - 0.696 ± <0.001 - 1.124 0.020

nuScenes GradNorm† [19] 0.112 ± <0.001 0.504 ± 0.005 - -
-lidarseg 1L* 0.119 ± <0.001 0.527 ± 0.009 0.597 ± 0.001 0.804 ± <0.001 1.191 0.021

15L* 0.123 ± <0.001 0.538 ± 0.007 0.682 ± <0.001 0.824 ± <0.001 1.079 0.017
15L+MGN* 0.123 ± <0.001 0.536 ± 0.008 0.685 ± <0.001 0.833 ± <0.001 1.069 0.017

†Scores are averaged across all views performed by 4 independent GradNorm models.
*The model only takes extracted feature maps from RGB encoders to perform DE and SS as there is no DVS data in nuScenes-lidarseg.
To be noted, the higher IoU and the lower MAE, total metric (TM), and metric variance (MV) scores mean the better the model. Keep in
mind that the TM score is used to determine the best model as it represents overall performance on all tasks. Meanwhile, the uncertainty on
each metric score is calculated by computing the variance across all inference results on each test set.

As shown in Table II, the model that takes 15-layer LiDAR
data (15L) has a better performance compared to the model
that takes 1 layer only (1L). The comparison between both
models is consistent where the 15L model has a lower total
metric (TM) score than the 1L model on all test sets. The TM
score get lowered from 1.452 to 1.448 (set A), 1.211 to 1.131
(set B), 1.138 to 1.050 (set C), and 1.191 to 1.079 (nuScenes-
lidarseg). Intuitively, adding more layers of information will
boost the LS performance as it has inline skip connections
from LiDAR encoder to LS decoder. This is proven by
comparing the IoULS score where the 15L model has a higher
score than the 1L model on all test sets. However, in the
BEVP task, both model variants are comparable to each other
as the 15L model has higher IoUBEV P scores on dataset
B and nuScenes-lidarseg but has lower scores on dataset A
and set C. Then, the other interesting thing is the result of
DE and SS tasks. Based on MAEDE and IoUSS scores, we
found that adding more LiDAR layers is somehow improving
DE and SS performance. Consistently, the 15L model has
higher IoUSS and lower MAEDE than the 1L model on all
simulation datasets, and only the DE performance is degraded
on nuScenes-lidarseg. As the pre-processed LiDAR keeps
the vertical information (ALIDz

to ILIDk
) and both RGB

and DVS images are naturally at the LiDAR’s z-axis, the

performance on DE and SS are getting improved. Although
there is no specific transformation applied to the network
architecture, the 15L model can learn the relationship between
shared feature maps. This means that the LiDAR also plays
an important role in DE and SS tasks and shows that the
15L model successfully leverages shared feature maps through
intermediate fusion at the 1st bottleneck.

Furthermore, based on the qualitative results shown in
Figure 7 (rainy night) and Figure 8 (sunny day), the image
quality of both 1L and 15L models are comparable on both
DE and LS tasks. To be more specific on a sunny day (samples
from nuScenes-lidarseg), the 15L model performance is quite
similar to the 1L model. However, if we take a close look
at the rear SS image, the 15L model can segment temporary
road barriers successfully while the 1L model cannot. Besides
that, on a rainy night (samples from set C), the 15L model
is performing better where it can segment the road lane on
the front view SS image. It is also better in recognizing
surrounding vehicles on both BEVP images.

B. Static vs Adaptive Loss Weighting

Plenty of tasks can lead to an uneven loss value which
depends on what kind of loss function is used. Even if
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Fig. 7: Inference results on a rainy night (Test set C). A qualitative comparison between our model variants (1L, 15L, and
15L+MGN) and combination of STL (single-task learning) and MTL models by Chen et al.’s [39] (BEVP), PolarNet [38]
(LS), and GradNorm [19] (DE and SS).
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Fig. 8: Inference results on a sunny day (Test set nuScenes-lidarseg). A qualitative comparison between our model variants
without DVS inputs (1L*, 15L*, and 15L+MGN*), and combination of STL (single-task learning) and MTL models by Chen
et al.’s [39] (BEVP), PolarNet [38] (LS), and GradNorm [19] (DE and SS).

1558-0016 ©2022 IEEE. This is the accepted version of the manuscript.
The published version can be accessed and cited at https://ieeexplore.ieee.org/document/9712213

https://ieeexplore.ieee.org/document/9712213


IEEE Transactions on Intelligent Transportation Systems 15

multiple related tasks are handled with the same loss function,
it still can lead to imbalanced learning due to the different
number of elements and characteristics at the output layer.
For instance, the elements in ILS are much larger than in
IBEV P and significantly different from ISS . Therefore, a
proper set of loss weights is needed to balance the task learning
process. Moreover, it has to be tuned automatically to avoid an
expensive computational cost in finding the best combination.
Therefore, we propose the MGN algorithm to balance the rate
of task learning by tuning each task’s loss weight adaptively.

Based on Table II, the model trained with the modified
GradNorm (MGN) algorithm (15L+MGN) has a better perfor-
mance compared to the previous best model with static loss
weights (15L) on all test sets. With a consistent result, the
total metric (TM) score gets lowered from 1.448 to 1.393 (set
A), 1.131 to 1.086 (set B), 1.050 to 0.999 (set C), and 1.079
to 1.069 (nuScenes-lidarseg). However, even with lower TM
scores, not all tasks are getting improved by the model. The
15L+MGN variant may have better performance on LS and
BEVP tasks where IoULS and IoUBEV P scores are higher
than the 15L variant. However, the 15L model still performs
better than the 15L+MGN by achieving lower MAEDE and
higher IoUSS on DE and SS tasks respectively. To be noted,
the goal of the MGN algorithm is to improve the overall model
performance by balancing the rate of learning on each task.
Instead of improving the performance of each task, the MGN
algorithm is focused on balancing the gradient signal among
the tasks. Therefore, the 15L model may still have a better
performance on some tasks. In this case, there is a performance
trade-off, especially between DE-SS tasks and LS-BEVP tasks.
Besides the TM score (7), the metric variance (MV) (8) can
be used to determine the model performance based on the rate
of discrepancy between tasks. As can be seen in Table II, the
MV of the 15L+MGN model is smaller than the 15L model
on all simulation datasets and has the same MV on nuScenes-
lidarseg. A lower MV indicates that the model performance on
overall tasks is getting balanced with just a little discrepancy.

Based on the qualitative results shown in Figure 7 (rainy
night) and Figure 8 (sunny day), we can see that the
15L+MGN model has a better BEVP performance where it
has a more clear projection of a car behind the ego vehicle
(sample of a rainy night in dataset C) and a better projection
of the roadmap (sample of a sunny day in nuScenes-lidarseg).
Meanwhile, the 15L model has a better SS performance on
overall views. To be more specific, the 15L model can segment
the sidewalk in the right SS image (set C) and the temporary
road barriers (nuScenes-lidarseg).

C. Loss Weighting Behavior

The loss weights update process of the 15L+MGN model
during the training phase can be seen in Figure 9. In all sim-
ulation datasets, at the time when the model is converged, the
modified GradNorm (MGN) algorithm tends to have similar
behavior where it gives the highest loss weight to the depth
estimation (DE) task followed by LiDAR segmentation (LS) at
the second, semantic segmentation (SS) at the third, and bird’s
eye view projection (BEVP) at the last. Meanwhile, the order

Loss weights update on dataset A

Loss weights update on dataset B

Loss weights update on dataset C

Loss weights update on nuScenes-lidarseg

Fig. 9: Loss weights update. The vertical black dashed line
shows the exact epoch where the model is converged with the
loss weights printed on the legend. The vertical axis on each
image is the loss weight while the horizontal axis is the epoch.
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between LS and SS is swapped in nuScenes-lidarseg. From
the loss weights change behavior, the MGN is penalizing less
on the BEVP task so that it will not cause a high imbalance.
As shown in the network architecture on Figure 2, the BEVP
decoder is placed after the 2nd bottleneck meaning that the
network has more focus during training. The gradient produced
from BEVP also affects the decoder of SS, DE, and LS tasks
on the previous layer. Thus, it makes sense that the MGN
penalizes the BEVP task less than the other tasks. For tasks
that are placed before the 2nd bottleneck, the DE task loss
calculated with Huber loss function (1) produce a smaller loss
value compared to LS and SS losses which are calculated
by BCEDice loss function (3). Hence, the MGN algorithm is
likely giving higher loss weight to the DE task to compensate
for the imbalance. With this mechanism, the network will not
lose its focus on the DE task learning while still maintaining
progress on learning the other tasks.

Moreover, even if the number of elements in ILS is equal to
ISS , both tasks have a significant difference in characteristics.
In ILS , many elements are filled with 0 since there are plenty
of vacant points which are not getting scanned by LiDAR
lasers. Meanwhile, in ISS , many elements are filled with 1
representing the one-hot object class on each tensor channel
and have a strong correlation as all points are captured by the
RGB camera. As a result, LSS tends to be bigger than LLS

even when computed with the same loss function. Therefore,
to balance the task learning, MGN is giving more weight on
the LS task than on the SS task. However, the loss weighting
behavior on SS and LS tasks is not consistent in the real-
world dataset. The weight order is swapped between those
tasks as the characteristic nuScenes-lidarseg is different from
the simulation dataset. To be noted, the sum of all loss weights
will always equal to T = 4 as they are normalized with (17)
at the end of each epoch.

D. Comparison with Recent Models

We also conduct further model testing by comparing our
models with some recent models for each task. In the multi-
task depth estimation (DE) and semantic segmentation (SS)
comparison, we train the original GradNorm model [19] for
each view so that there are four models in total. We use the
GradNorm SegNet [50] version with VGG16 encoder [51]
and symmetric task decoders for comparative study as the
GradNrom authors only use this model for in-depth analysis.
The training setup is configured to be the same as described
in the GradNorm paper where Adam optimizer [52] along
with pixel-wise cross-entropy and squared losses are used
to train the model. Then, in the LiDAR segmentation (LS)
comparison, we train PolarNet [38] to take our pre-processed
LiDAR point clouds. We use the same training configuration
written in the provided code as the author did not mention
the detail in their paper. Concisely, Adam optimizer [52]
along with cross-entropy loss is used to train the model
until convergence. Finally, in the bird’s eye view projection
(BEVP) comparison, we replicate Chen et al.’s model [39]
that takes front RGB and top view LS images as the input.
The model has a BEVP decoder to perform BEVP and input

reconstruction modules that reconstruct the front RGB and LS
images. However, LS input and BEVP output are represented
in RGB image representation {0, ..., 255}3×128×128. This kind
of representation is not suitable for segmentation-related tasks.
Thus, we change it into a one-hot encoded image, so that each
of them is represented as {0, 1}C×128×128 where C is the
number of possible classes. Then, we put 1 extra point-wise
(1× 1) convolution layer and a sigmoid activation at the last
layer of the LS input reconstruction module and BEVP de-
coder. With this modification, the metric function IoU (6) can
be calculated for comparison purposes. Furthermore, besides
comparing all metric scores, we also compare the number of
model parameters, model size, GPU memory utilization, and
inference speed to measure how efficient the model is.

Based on Table II, our best model variant (15L+MGN)
is better than the combination of Chen et al., PolarNet, and
GradNorm models. In small and large datasets, the 15L+MGN
model has lower total metric (TM) scores of 1.393 (set A),
1.086 (set B), and 1.069 (nuScenes-lidarseg). Meanwhile, the
other variants still maintain a comparable performance with
a small gap. However, in the medium dataset (set C), the
combination has a better performance with a TM score of
0.976. Independently, PolarNet consistently gives a better LS
performance by achieving the highest IoULS in all datasets.
Meanwhile, Chen et al. and GradNorm models are still com-
parable in BEVP, DE, and SS tasks. However, based on the
qualitative results shown in Figure 7 (rainy night) and Figure
8 (sunny day), both Chen et al. and GradNorm models are
missing the surrounding vehicles. On BEVP images, Chen
et al.’s model is able to locate the occupied area by the
surrounding vehicles, but cannot segment the vehicle correctly
(set C). It also cannot project the local roadmap as well as our
models (nuScenes-lidarseg). Then, as shown on SS images,
GradNorm is facing difficulties in segmenting vehicles on a
rainy night. On the other hand, our model faces the same
difficulties, but it can locate the occupied region properly.
During a rainy condition, the DVS sensor is distracted by the
raindrops. As a result, the DE performance of our model is
getting degraded. Then, as shown on LS images, both PolarNet
and our models have a similar performance where both models
can segment all objects from the top view perspective and
locate the corresponding pixel class nearly the same as in the
ground truth. Then, based on Table III, our models have much
fewer parameters where they only have less than 2% of the
total parameters owned by the combination. Even with that
small number of parameters, the 15L+MGN model maintains a
better performance with less GPU memory utilization. Hence,
it has a smaller size and can infer faster with a speed of around
54 frames per second (FPS) on simulation datasets and 65 FPS
on a real-world dataset. Considering the performance result
shown in Table II and Table III along with the qualitative
result shown on Figure 7 (rainy night) and Figure 8 (sunny
day), it can be said that our model is better and more efficient
than the combination. Moreover, our model is more preferable
due to its compactness and smaller size.

The reason why our model can outperform the combination
even with fewer parameters is that it can leverage feature
sharing on its encoders that process multiple views of input
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TABLE III: Model Comparison

Dataset Model Parameters Total Parameters Size Total Size GPU Usage FPS

Chen et al. [39] 10365211 83.061
PolarNet [38] 13403701 136728752 107.342 1094.867 1987 44.472

Simulation 4×GradNorm† [19] 4×28239960 4×226.116
(A, B, C) 1L 2519488 2519488 20.549 20.549 1049 57.117

15L 2521504 2521504 20.565 20.565 1049 56.018
15L+MGN 2521504 2521504 20.565 20.565 1049 54.428

Chen et al. [39] 10372539 83.120
PolarNet [38] 13404286 136757437 107.347 1095.099 2025 48.236

nuScenes 4×GradNorm† [19] 4×28245153 4×226.158
-lidarseg 1L* 2275604 2275604 18.557 18.557 1015 65.969

15L* 2277620 2277620 18.574 18.574 1017 65.426
15L+MGN* 2277620 2277620 18.574 18.574 1017 65.192

†The number of parameters and model size of the GradNorm model are multiplied by 4 as there are 4 models in total.
*The model does not have DVS encoders as there is no DVS input given.
For a fair comparison, we use the same GPU device (NVIDIA GTX 1080 Ti) to run all models with batch size = 1. However, the inference
speed measured in frame per second (FPS) is slightly different on each dataset due to the fluctuating GPU performance. Therefore, we
average the FPS over A, B, and C datasets for the inference on simulation data. We separate the measurement on nuScenes-lidarseg as it
has different characteristics. Thus, there is a small change in the number of parameters, model size (in MB), and GPU usage (in MB).

to efficiently learn the features. The network architecture
makes it possible for each decoder to take the advantage of
the extracted features from each encoder. Besides that, our
proposed techniques are also playing an important key in
boosting the model performance and keeping the performance
balanced. Based on Table II, without using these methods, our
model cannot be better than the combination. Our 15L+MGN
model may win on datasets A, B, and nuScenes-lidarseg but
lose on dataset C with a TM score gap of 0.023. However, if
we take a close look at the scores on dataset C, the lowest TM
score obtained by the combination is mostly influenced only
by the outstanding performance of PolarNet which achieves
IoULS of 0.735. In fact, PolarNet has always maintained
to be the best on the LS task in all datasets. In dataset C,
PolarNet outperforms our model with an IoULS gap of 0.057
which is the largest amongst all experiments. If the gap on
IoULS is similar to the gap in other datasets, our model might
have won on dataset C. PolarNet has what is called “ring-
connected CNN“ that is specifically used to process LiDAR
data. Therefore, with a larger number of learnable parameters,
it is more capable of capturing more useful features in varying
areas. To be noted, based on the number of towns used on
each dataset, it can be said that dataset C is more varied as it
contains 5 different maps while datasets A, B, and nuScenes-
lidarseg only 2 maps, and both are similar to each other.

VI. CONCLUSION

In this research, we develop a compact deep multi-task
learning (MTL) model to perform various driving perception
tasks simultaneously in one forward pass. Through data pre-
processing and multi-sensor fusion techniques, the model can
process and combine multiple input modalities. In addition,
we propose an adaptive loss weighting algorithm to tackle the
imbalanced learning issue and boost the overall performance.
To understand the influence and behavior of our proposed

methods, an ablation experiment is conducted by creating
several variants. Finally, a comparative study against the
combination of some recent models is conducted to clarify
performance and efficiency.

From the ablation and comparative experiment results on
both simulation and real-world datasets, we disclosed several
findings as follows. First, we conclude that by keeping the
height information of the LiDAR point clouds ALID’s z-
coordinate, the overall model performance is improved, es-
pecially in the LS task that has direct skip connections from
the LiDAR encoder. This is proven by the 15L model that has
a better performance compared to the 1L model. Moreover,
with rich vertical features given from the LiDAR encoder
through intermediate fusion at the first bottleneck, the 15L
model gains better performance on DE and SS tasks. Second,
by using the modified GradNorm (MGN) algorithm to update
the loss weights adaptively based on the gradient signal during
training, the MTL process is successfully balanced. From
the comparison result, the 15L+MGN model performs better
than the 15L model where it has lower total metric (TM)
and metric variance (MV) scores. To be more detailed, the
MGN algorithm makes a trade-off between DE-SS tasks with
LS-BEVP tasks. Based on the loss weighting behavior, the
MGN algorithm tends to penalize less on the task that has a
higher focus by default such as the bird’s eye view projection
(BEVP) task that is placed at the end of the network. This
algorithm is also capable of compensating small or large losses
produced by different loss functions with varying output ele-
ments. As evidence, the depth estimation (DE) loss computed
with the Huber loss function has a bigger loss weight than
LiDAR segmentation (LS) and semantic segmentation (SS)
loss computed with the BCEDice loss function. Finally, based
on the comparison against the combination of some recent
models, our best model variant (15L+MGN) maintains better
performance even with much fewer parameters. Hence, it can
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inference faster and consume less GPU memory which is more
preferable for further deployment.

In future works, research on adaptive network branching can
be conducted by letting the model find the best architecture to
avoid designing the network manually. Furthermore, tackling
all perception, planning, and control tasks simultaneously is
also an interesting challenge in autonomous driving research.
Therefore, fully end-to-end learning of an autonomous driving
agent can be achieved.
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