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Abstract

This paper describes a new framework for a planning of
vision and motion for a mobile robot. For a planning in a
real world, the uncertainty and the cost of visual recogni-
tion are important issues. A robot has to consider a trade-
off between the cost of visual recognition and the effect of
information obtained by recognition. A problem is to gen-
erate a sequence of vision and motion operations based on
a sensor information which is an integration of the current
information and the predicted next sensor data. The prob-
lem is solved by recursive prediction of sensor information
and the recursive search of operations. As an example of
sensor modeling, we describe a model of stereo vision in
which correspondence of wrong pairs of features as well
as quantization error is considered. Using the framework,
a robot can successfully generate a plan for a real world
problem.

I. Introduction

Mobile robot with vision is one of the most interesting sub-
jects in robotics research. For a planning in a real world,
the uncertainty and the cost of visual recognition are im-
portant issues. A robot has to consider a trade-off between
the cost of visual recognition (including the cost of motion
for recognition) and the effect of information obtained by
vision. A robot also has to consider both the cost of vi-
sual recognition and that of motion to generate an optimal
sequence of vision and motion operations.

There have been many works on the path planning of
mobile robots [2][9]. Most of them assume that the envi-
ronment is completely known. Clearly, this assumption is
inappropriate in a real world.

Cameron et al.[3] applied Bayesian decision theory to
selecting the optimal sensing. Hutchinson et al.[5] used
Dempster-Shafer theory to represent uncertainty in object
identification. These methods do not consider the cost of
recognition. Besides, since they select a sensing operation
one by one using some utility function, solutions are only
locally optimal. In the planning system by Dean et al.[4], a
mobile robot selects one sensing operation that minimizes
the expectation of the total cost of the task. The selected
sensing operation is still locally optimal.

If multiple sensing operations and motions are required
to achieve a given goal, both recursive prediction of sensor
information and the recursive search of optimal operations
are necessary for making a globally optimal plan. This pa-
per describes the three important topics:

• method of predicting sensor information,
• formulation of planning problem, and
• modeling of uncertainty of vision.

II. Motion Selection with Uncertain Infor-
mation

Let us consider figure 1. A robot is going to Goal. There
are two paths, pass and detour, and the former is shorter.
When the robot estimates the distance between objects, the
estimated value will be distributed because of uncertainty
of vision. In our framework, the robot, whose width is
Wrobot, decides on the next motion based on the following
criterion. In case (a) of figure 2, the robot decides that the
pass is passable and takes it. In case (c), the robot decides
that pass is impassable and takes detour. In case (b), the
robot cannot decide whether pass is passable, and further
sensing is needed. The robot, however, will take detour if
taking it has less cost than doing extra sensing and taking
pass. For a planning, therefore, it is necessary to consider
the uncertainty and the cost of visual recognition and those
of motion.
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Fig. 1: A robot passing through obstacles.

III. Prediction of Sensor Information
To make a plan including sensing, a robot must be able to
predict sensor information. We here explain how to pre-
dict sensor information using an example. Suppose that a
robot is determining the location of a feature F and a two-
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Fig. 2: Relation between the robot width and the distribu-
tion of the distance between objects.

dimensional distribution which represents the positional
uncertainty of F has been acquired by sensing so far. Let
P1 in figure 3 denote this distribution. If the true position
of F is x0, the actual observed position from another view-
point will be distributed. Let P2 in the figure denote this
distribution. P2 depends on observation conditions such as
the distance and the direction of observation. Now, let as-
sume that the robot actually observed F at y0 and we call
this event Y . The new positional distribution of F after Y
is computed by integrating the prior distribution P1 and the
event Y . This integration is carried out using Bayes rule.
The new distribution becomes
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Fig. 3: Distributions of the position of F .

Pafter(x) = P (x|Y ) =
P (x)P (Y |x)∫

x
P (x)P (Y |x)dx

. (1)

Suppose P2 is represented as P2(u) using u, a position
vector of the observed position with respect to the true po-
sition. Then, P (Y |x) becomes P2(y0 − x) and equation

(1) is rewritten as

Pafter(x) =
P1(x)P2(y0 − x)∫

x
P1(x)P2(y0 − x)dx

. (2)

The probability of acquiring this information is the
product of the probability that true point is x0 and
the probability that the observed position is y0, that is,
P1(x0)P2(y0 − x0). A robot can predict what informa-
tion is acquired with how much probability by computing
equation (2) for every possible combination of x0 and y0.

When a robot observes the environment at many posi-
tions, the uncertainty of motion also needs to be consid-
ered. In such case, P2 is calculated considering such un-
certainty and then, equation (2) is applied.

IV. Formulation of the Vision-Motion Plan-
ning Problem

An optimal plan of vision and motion operations of a robot
depends on the environment. It is difficult to generate the
optimal plan in advance when only uncertain information
about the environment is available. Here, we define that the
optimal plan is a plan which minimizes the expectation of
the total cost. We assume that the state of the environment
is represented by a multivariate distribution, each variable
of which is a property of the environment. We call such
multivariate distribution distribution information and de-
scribe it by D. We here derive a recurrence formula which
relates the current position xi and distribution information
Di with the optimal next observation position xi+1 and
observation oi+1.

Since an observed data is a vector of properties, the
uncertainty of an observed data becomes a multivari-
ate distribution. Let Pobsd(s; Di,xi+1,oi+1) denote the
probability of getting an observed vector s. Also, let
fuse(D, s,x,o) be a function which computes a new dis-
tribution information from D, s, x and o using the method
described in the previous section. A robot can predict that
a distribution information fuse(Di, s,xi+1,oi+1) will be
acquired with the probability Pobsd(s;Di,xi+1,oi+1) af-
ter an observation oi+1 at xi+1.

Because Bayes rule is used for integrating information,
the integration result includes all information acquired in
recognition processes in the past. Therefore, the optimal
plan based on some specific position and distribution in-
formation is independent of how such information has been
acquired. Consequently, the minimum cost at xi with dis-
tribution information Di becomes the minimum of the sum
of the following:

1. the cost of motion to the next observation point xi+1.
2. the cost of the next observation oi+1.
3. the minimum cost from xi+1 to the goal point. This

is a weighted sum of minimum expectations of the
cost, each of which depends on each possible sensor
information s obtained by oi+1 and weighted with the
probability of s.



Therefore, the problem of vision-motion planning with un-
certainty is formulated as follows:

Co(xi,Di) =
min

xi+1 ∈ X ,
oi+1 ∈ O

(Cm(xi,xi+1) + Cv(oi+1)+
min cost(xi+1, goal)),

min cost(xi+1, goal) =∫
Pobsd(s;Di,xi+1,oi+1) ·

Co(xi+1, fuse(Di, s,xi+1,oi+1))ds

(3)

Co(x,D): The optimal cost with D at x.
Cm(x,y): The cost of motion from x to y.
Cv(o): The cost of observation o.
X : A possible range of xi+1.
O: A possible range of oi+1.

Since the planning problem is represented by a recur-
rence formula, a robot can get the optimal sequence of
observation points using dynamic programming (DP). As
mentioned in section II, a robot is sometimes able to decide
on the final motion without further observation (cases (a)
and (c) in figure 2). In such situations, the cost to the desti-
nation can be computed without using equation (3) and the
recursive computation terminates.

In [8], we analyzed a simple vision-motion planning
problem and concluded that hill-climbing is useful to limit
a search space at each stage of DP. However, even if we
combine DP with hill-climbing, the planning problem is
not yet free from combinatorial explosion. To reduce the
computational cost, pruning using problem specific con-
straints is necessary. Pruning branches with little probabil-
ity is also useful although plans become suboptimal.

V. Modeling Uncertainties of Stereo Vision

Our framework does not make any assumptions on a model
of sensing uncertainty except that uncertainties are repre-
sented by probabilistic distributions. However, a concrete
model of sensors is needed to solve a planning problem of
an actual robot. We here describe a model of stereo vision
as an example of modeling uncertainty. Although most re-
searches [1][6][7] deal with only quantization error in edge
detection, uncertainty caused by correspondence of wrong
pairs of features also needs to be investigated because this
uncertainty is much greater than quantization errors.

A. Quantization Error in Edge Detection

Suppose a point at (x, z) be observed at XL and XR on
the left and the right images, respectively. We assume that
the real positions of XL and XR are normally and inde-
pendently distributed, and linearize the equation of the im-
age projection [6]. Then, the uncertainty of (x, z) can be
represented by a two-dimensional normal distribution. Al-
though the distribution of (XL, XR) depends on the con-
trast of each edge, we currently assume that this distribu-
tion always has the same covariance matrix.

Using this model, distributions of other properties can
be computed. For example, suppose that a robot is mea-
suring the distance between two features. Letting x1 and
x2 be positions of two features and their distributions be
P1(x1) and P2(x2), the distribution of the distance d,
P (d), is given by

P (d) =
∫ ∫

‖x1−x2‖= d

P (x1)P (x2)dx1dx2. (4)

Using discretized distributions, we calculated the uncer-
tainty of the distance (the difference of the maximum and
the minimum distance) at each viewpoint. Figure 4 shows
the result.

Fig. 4: Change of the uncertainty of the distance between
objects. The brighter a point is, the less uncertain an mea-
surement is.

B. Estimating Uncertainty Caused by Corre-
spondence of Wrong Pairs

The most important problem in stereo vision is to deter-
mine matching pairs of features. We employ a local dis-
parity histogram (LDH)-based method [10] to determine
matching pairs. The outline of this method is as follows.
First, for every features in the left image, candidates of the
corresponding features in the right image are obtained on
the basis of the similarity of the contrast and the direction.
Then, the image is divided into small overlapping areas
(windows) and the LDH in each window is computed from
candidates of matching pairs. If the LDH has one promi-
nent peak, the disparity of a window is determined and the
matching pairs of features are established in the window.

When an LDH has multiple prominent peaks, a robot
cannot decide which is true unless any other clues are avail-
able. In such case, a robot consider that each disparity cor-
responding to each peak may be true. Suppose a robot is
estimating the position of a feature and the LDH of a win-
dow including the feature is figure 5. First, a robot elim-
inates clusters which are too small (A) or which do not
include the disparities for the candidates of corresponding
features (B and D). Two clusters (C and E) are accepted



and peaks of those clusters indicate possible disparities.
For each disparity, a normal distribution for the positional
uncertainty of the feature can be computed. Then, a robot
considers that the positional distribution of the feature is
represented by the weighted sum of such normal distribu-
tions, where each weight is given by the normalized num-
ber of points in each cluster.

disparity
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C

D E

too small

including the disparities
of the corresponding points

of the corresponding points
not including the disparities

Fig. 5: An example LDH.

We applied this procedure to the real data. Figure 6
shows a pair of stereo images. Suppose a robot is estimat-
ing the distance between boxes (the distance between the
rightmost point of the left box and the leftmost point of the
right box). Small squares in the left image indicate win-
dows for calculating LDHs. Figure 7 shows the computed
LDHs. There are two acceptable clusters (black ones in
the figure) for both windows. Peak disparities and weights
are also indicated. The true disparity is 53. Arrows in the
right image indicate four positions of corresponding fea-
tures (two for true matchings and two for false ones) for
computed disparities. Figure 8 shows the positional dis-
tributions of the two features. The distribution of the left
feature is composed of L1 and L2 and that of the right one
is composed of R1 and R2, where L2 and R2 are for false
points.

C. Selecting Views to Resolve Ambiguity Caused
by Multiple Matching Pairs

When there are multiple possible disparities, it is neces-
sary for a robot to choose the next viewpoint from which
only one of such disparities will be known to be true. Let
us consider figure 9. There are two candidate positions for
a feature estimated by the first observation. Suppose T is
the true position and F is the false one. Of course, for the
robot, the position of the feature is still the weighted sum of
two normal distributions centered at T and F . If a wrong
matching about the feature occurs again by the second ob-
servation, the false position will lie on the line determined
by T and either of two lens centers. Let F ′ be the second
false position. As mentioned in section III, the information
after two observations is computed by integrating the first
and the second observed data. If F and F ′ are so apart
from each other that they cannot be integrated, only T will
remain and the matching ambiguity will be resolved.
F and F ′ can be integrated if their corresponding distri-

butions can be integrated. We can check whether two nor-
mal distributions can be integrated by using Mahalanobis

Fig. 6: A pair of stereo images.
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Fig. 7: LDHs for the left and the right feature points.

Fig. 8: Distributions of the two feature points. The darker
a point is, the higher its probability is.
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Fig. 9: Viewpoints for resolving ambiguity.

distance [1]. Let µF , µF ′ , CF and CF ′ denote means and
covariance matrices of distributions of F and F ′. The Ma-
halanobis distance between two distributions, dm, is

dm = (µF − µF ′)T (CF + CF ′)−1(µF − µF ′). (5)

dm has a χ2 distribution with two degrees of freedom.
Looking at a χ2 table, it is possible to check whether two
distributions can be integrated with certain confidence by
setting an appropriate threshold on dm.

Let assume that the observation direction is limited to
the direction from the robot toward T . If we check whether
each view is appropriate by investigating the worst case,
checking four cases (F ′

A ∼ F ′
D) in figure 10 is sufficient

for this purpose. In case of F ′
A, for example, F ′

A lies on the
line determined by T and the left lens center. For each pos-
sible position of F ′

A, we first compute the distribution of
F ′

A considering quantization error. We then compute Ma-
halanobis distance between this distribution and the distri-
bution of F which has been already calculated in the first
observation. We repeat this computation for all possible
positions of F ′ and takes the minimum value. If the min-
imum value throughout the four cases is larger than some
threshold, F and F ′ cannot be integrated, and consequently
this second observation position is appropriate for resolv-
ing ambiguity.

VI. Experimental Results
Figure 11 shows the experimental environment. A robot is
going to destination. There are two boxes in front of the
robot. If the distance between boxes is large enough, the
robot can take a short path to destination. Otherwise, the
robot must take a longer path through the passageway. The
problem is to find the optimal sequence of observation and
motion operations which minimizes the expectation of the
total cost. Figure 6 is a pair of stereo images taken at the
current position. The robot makes the plan based on this
pair of images.

The front position is true. The rear position is true.
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Fig. 10: Four cases for the test of the Mahalanobis dis-
tance.

The robot searched the optimal sequence of observation
points in the SearchArea shown in figure 11. To reduce
computation, observation points were limited to only grid
points set on SearchArea and discretized distributions
were used. In addition, the following assumptions were
made: Time for estimating the distance between boxes
once is constant. Uncertainty of motion is negligible. Time
for motion is proportional to the distance. In the outside of
SearchArea, the costs for moves are predetermined. The
robot passes the center between boxes, if possible. The
paths of the robot consist of straight-line segments.

Figure 12 shows the calculated optimal plan. Before
searching an optimal plan, the robot computed the areas
where observations may not be able to resolve ambiguity of
multiple correspondence or where observations may cause
occlusion of the feature of the one box by the that of an-
other. These areas, drawn in figure 12, were excluded from
the actual search area. In the figure, planned paths of the
robot are indicated by lines and observation points are indi-
cated by branches. According to this plan, the robot moves
as follows. The robot observes only once at the indicated
point and decides on the final motion based on the informa-
tion acquired at that point. When the true positions are L1

and R1, the robot passes between boxes if the distance be-
tween them are large enough and otherwise, the robot will
take a detour through passageway. In other three cases,
that is, in the cases that the combination of true positions is
L1 −R2, L2 −R1 or L2 −R2, the robot can pass between
boxes. While there are five possible paths in the plan, it
is undecided in advance which path the robot will actually
take.

VII. Conclusions and Discussions

This paper describes a new framework of planning of vi-
sion and motion for a mobile robot under uncertainty. We
proposed a method of predicting sensor information and
formulated the planning problem in a recurrence formula.
As an example of sensor modeling, we described a model
of the uncertainty of stereo vision in which correspondence
of wrong pairs of features as well as quantization errors are
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considered. Using our framework, a robot can successfully
make a plan for a real world problem.

Our current implementation requires much computation
even for a simple problem. We have to introduce methods
of reducing computation such as:

• To divide the problem into subproblems and to apply
our method to each subproblems or

• To classify calculated plans for many situations into
patterns to generate planning rules.
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