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Abstract

This paper describes a new method of modeling an

environment in terms of obstacles and free spaces from

a set of 3D segments obtained by stereo vision. Since

the stereo vision provides only the position of seg-

ments, it is necessary to determine whether a region

formed by the segments is an obstacle or a free space.

The ambiguities and the uncertainties in the obtained

data must be considered in modeling. The �nal output

of the proposed method is a set of possible situations of

the environment and their probabilities; each situation

consists of the description of obstacles and critical re-

gions between the obstacles. Experimental results for

a real scene are described.

1 Introduction

Detection of obstacles and free spaces is an essen-

tial function of the vision system for a mobile robot.

Even if a robot is given a map of the environment,

this function is indispensable to cope with unknown

obstacles or errors of the map.

There have been many research works on geometric

modeling of the environment from sensory data. Most

of them use a laser range �nder [8] [10] or an ultrasonic

sensor [3] [5].

Stereo vision is a passive ranging method and is im-

portant in many situations where active ranging meth-

ods are not feasible [1]. There are few works on en-

vironment modeling using stereo vision. Since most

stereo systems provide sparse range data, it is neces-

sary to determine object regions. Faugeras et al. [4]

proposed a method of obtaining polyhedral surfaces

by interpolating position data of 3D segments. The

method is based on the Delaunay triangulation and

a simple visibility constraint. Echigo [2] proposed a
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Figure 1: A pair of stereo images.

method of calculating free areas using occlusion in-

formation and the assumption of polyhedral objects.

These methods, however, do not consider the uncer-

tainty of stereo data.

The most important information when a mobile

robot moves among obstacles is the passability of

the spaces between obstacles. If the objective of a

robot is to reach the goal point, the precise descrip-

tion of a whole environment may be unnecessary. In

many cases, the topological structure of possible paths

and the description of critical (narrow) regions on the

paths are su�cient.

This paper describes a new method of modeling an

environment in terms of obstacles and free spaces from

a set of 3D segments obtained by a segment-based

stereo vision. The target scene is non-trivial indoor

scenes; for example, a scene shown in Fig.1. Given

a set of 3D segments, the system calculates possible

situations of the environment and their probabilities.

Each situation consists of the description of obstacles

and critical regions between obstacles. An obstacle

is represented by a set of 3D segments. A critical

region is a region which a robot need to pay atten-

tion to in passing between obstacles. This modeling is

performed considering the positional uncertainties of

segments and the ambiguities of the stereo matching.
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Figure 2: From segment data to obstacles.

2 Basic Idea

All 3D segments above the ground plane are pro-

jected onto the oor. Thus, the segments are repre-

sented by 2D segments (see Fig.2(a)) and obstacles

and free spaces are modeled in a 2D space. The po-

sitional distribution of each endpoint is also provided

from stereo.

Let us consider a mobile robot passing between two

points. From the positional distribution of the points,

the distribution of the distance between the points can

be calculated. According to the relation between the

distribution and the robot width, possible relations be-

tween two points are classi�ed into three cases: pass-

able, impassable, and undecided (see Fig.3). By using

impassable relation, endpoints are clustered into point

groups so that inside a group, every point is reach-

able from one point via only impassable relations (see

Fig.2(b)). Since a robot cannot pass between any two

points of a group, each group is regarded as an ob-

stacle. Then, critical regions between obstacles are

determined (see Fig.2(c)). A critical region is set to

cover all undecided relations between two obstacles;

this region is critical for determining the passability

of the space.

If there are ambiguous matchings, an actual situ-

ation depends on the actual state of the matchings,

and is undecided in advance. In such a case, possible

situations and their probabilities are calculated.

3 Uncertainty Modeling of Segment-

Based Stereo

This section describes the model of uncertainty of

our stereo method [7]. We use a straight line segment

as a primitive because there are many line segments
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Figure 3: Three possible relations between the robot

width and the distance between two points.

in indoor scenes.

3.1 Matching Process

Potential match of segments are �rst detected based

on the epipolar and the directional constraint; a pair

of segments can be matched if their vertical positions

overlap each other to a certain extent and they have

similar directions. If two segments have almost oppo-

site directions, they are accepted as a matched pair

because the direction of an occluding edge may be op-

posite in the left and the right image.

In order to decide the matching among the candi-

dates, we employ a local disparity histogram [9]. In



this method, we assume that the disparity is almost

constant in a local region. A disparity histogram is cal-

culated from the possible matching pairs of segments

in the region; each candidate disparity is weighted by

the sum of the length of segments which have that

disparity. If the histogram has one prominent peak,

this peak indicates the disparity of the local region.

The actual matching in the region is established based

on the determined disparity. From each matching of

segments, a 3D line segment is calculated by triangu-

lation.

3.2 Model of Quantization Error

The positional distribution of a segment in a real

space depends on edges used by stereo matching. The

horizontal position of a segment in the image is cal-

culated from edges in the vertically overlapping part

of the segment. The distribution of the horizontal po-

sition is calculated from the positional distributions

of the edges by the least squares method. Assuming

that the horizontal position of each edge is normally

distributed, the horizontal position of each segment

also follows a normal distribution. By linearizing the

equation of the image projection, the positional dis-

tribution of an endpoint of a segment in a real space

is represented by a 2D normal distribution.

3.3 Model of Ambiguous Matching

If the disparity histogram of a local region has mul-

tiple prominent peaks, there are multiple candidate

disparities in the region. If a segment in the left im-

age has multiple matching candidates corresponding

to some of these disparities, we cannot decide which

one is true. In such a case, the possible matchings are

all kept in the model, and the ambiguity is resolved

by the subsequent observations if necessary.

For each matching candidate, a 3D segment in a

real space is calculated. The 3D segment is then pro-

jected into a 2D segment. In case of multiple match-

ing candidates, we assign a probability to each 2D

segment. Let n denote the number of possible 2D

segments, and ak denote the size of the peak corre-

sponding to the k-th segment. The probability P
k of

the k-th segment is determined by

P
k =

akPn

j=1 aj

: (1)

Each 2D segment has the positional uncertainty cal-

culated from the model of the quantization error.

Fig.4, for example, shows a top view of 2D segments

calculated from a pair of images shown in Fig.1. Each

circle indicates the mean of the 2D normal distribution

of an endpoint of a segment. A thick line connecting

two circles is a 2D segment. Each thin line connecting

2D segments indicates the ambiguous matching of a

segment. Positional uncertainties are also indicated.

field of view

Figure 4: Calculated 2D positions with matching am-

biguity and positional uncertainty.

4 Modeling Algorithm

This section describes the modeling algorithm in

detail. We divide 2D segments in a real space into

two categories: unambiguous segment and ambiguous

segment. One ambiguous segment has multiple possi-

ble positions corresponding to possible matchings. In

modeling, we �rst use only unambiguous segments,

and then add ambiguous segments into the model.

The �nal output of the modeling process is a set of

possible situations with their probabilities.

4.1 Modeling using Unambiguous Seg-
ments

Modeling using unambiguous segments is per-

formed by the following four steps:

Eliminate isolated short segments: Since iso-

lated short segments possibly are obtained from false

matchings, such segments are eliminated.

Classify relations between endpoints of seg-

ments and cluster endpoints: Relations between



endpoints are classi�ed into three categories: passable,

impassable, and undecided. The relation between two

endpoints of a segment is assigned to be impassable.

Endpoints are then clustered into obstacles. Each ob-

stacle could be approximated by a plane �gure such

as a polygon.

Determine critical regions: As mentioned

above, a critical region is critical for determining pass-

abilities between obstacles. Since any undecided rela-

tions are critical, a critical region is set to cover all

undecided relations as shown in Fig.5. In application

to planning, the distribution of the distance between

two obstacles is necessary [6]. We use the most criti-

cal (narrowest) undecided relation in a critical region

in order to calculate the distribution.

Determine occluded areas: Considering the vis-

ibility of segments from a current observation point,

the area behind the obstacles is determined as an oc-

cluded area. If an area is fully occluded, the passabil-

ity of the area is completely unknown. If an area is

partially occluded (e.g. the area between the book-

shelf and the chairs at the right part of Fig.1), the

passability of the area is conjectured to a certain ex-

tent. Thus, the passability of an occluded area could

be decided according to the degree of occlusion. At

present, an occluded area is treated as a free space.

Fig.6 shows the modeling result using unambigu-

ous segments in Fig.4. Obstacles, critical regions, and

occluded regions are indicated.

4.2 Add Ambiguous Segments into the
Model

After modeling obstacles and free spaces using un-

ambiguous segments, ambiguous segments are added

into the model. If there are n ambiguous segments and

each ambiguous segment has mn candidate matchings,

it is, in principle, necessary to investigate
Qn

i=1mn

situations. Since this computation may cause combi-

natorial explosion, we want to reduce both n and mn

as many as possible. For this purpose, we perform the

following operations:

Eliminate isolated short segments: Similar to

the case of unambiguous segments.

Grouping ambiguous segments: If several am-

biguous segments may have almost the same combina-

tion of candidate positions, the segments are consid-

ered to belong to one object. Instead of investigating

every combination of possible states, the ambiguity of

one unambiguous segment is considered (see Fig.7).

Eliminate segments which do not a�ect the

passability: If the ambiguity of a segment does not

critical region
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Figure 5: Calculation of a critical region.
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Figure 6: Modeling result using only unambiguous

segments.

a�ect the passability of any space (i.e. does not change

the topological structure of possible paths), the seg-

ment is eliminated. Such segments are shown in Fig.8.

In the �gure, every position of segment q makes space

A-C impassable. Thus, obstacles A and C are merged

and segment b is eliminated. Although the lower po-

sition of segment p may change the cost of the path

through space B-C, we neglect it for reducing the cost

of planning.

After the above operations, the remaining ambigu-

ous segments are divided into mutually-independent

groups by considering the e�ects of the segments

against the passability; all ambiguous segments in a

group should be considered at the same time.

In Fig.9, for example, segments p and q, segments

r and s, and segments s and t are responsible for the

passability of space A-B, space B-C, and space A-C,

respectively. Therefore, there are two groups: fp; qg

and fr; s; tg.

For each group, possible combinations of segment



Figure 7: Group similar ambigu-

ous segments into an object.
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Figure 9: Grouping WTA seg-

ments.
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Figure 11: Two of possible situations: (a) a2, b2 and

c1 are true; (b) a2, b2 and c2 are true.

positions are enumerated, and the situation and its

probability is calculated for each combination. If the

passability of a space is undecided, a critical region in-

cluding both unambiguous and ambiguous segments is

calculated. By combining the results calculated from

the segment groups, the �nal set of situations is ob-

tained. The probability of a situation is given by the

product of probabilities of selected positions of the seg-

ments. Suppose the k(i)-th position is selected for the

i-th segment in a situation. The probability P (k(i))

of the selection for the i-th segment is given by Eq.(1).

The probability of the situation is given by

P

�
k(1); k(2); : : : ; k(n)

�
=

nY
i=1

P

�
k(i)

�
; (2)

�
k(i) = 1; : : : ;m(i)

�
;

where n is the number of the segments, m(i) is the

number of positions for the i-th segment.

Fig.10 shows remaining ambiguous segments. Pos-

sible positions of the segments are indicated by large

circles. Since there are three ambiguous segments and

each segment has two possible positions (a
1
-a
2
, b

1
-b
2

and c1-c2), there are eight possible situations. Two

of them are shown in Fig.11. The probability and

the passability of the space between obstacles are in-

dicated. Thin dashed lines in spaces 1-2 and 2-3 in-

dicate undecided relations in modeling using unam-

biguous segments (cf. Fig.6). By adding ambiguous

matchings, impassable relation (bold line) and unde-

cided relation (bold dashed line) are newly detected.

The topological structure of possible paths is easily

extracted from the result.



5 Application to Vision-Motion Plan-

ning

In our previous paper [6], we formulated a vision-

motion planning under uncertainty based on proba-

bilistic decision theory, where uncertainty of proper-

ties of the environment are modeled by probabilistic

distributions and the optimal (expectation-minimum)

sequence of vision and motion operations is recursively

determined.

In solving a planning problem, possible alternatives

at each decision point should be provided. For the

problem that a mobile robot goes to the goal point

among obstacles, important decisions are made on

path selection and viewpoint selection. Our model-

ing method can provide su�cient alternatives for both

of the decisions: the topological structure of possible

paths and critical regions to be observed. If some of

paths are not related to the problem, we can neglect

them, thereby reducing the computational cost.

6 Conclusions and Discussion

We have proposed a new method of modeling obsta-

cles and free spaces from a set of 3D segments obtained

by a segment-based stereo. By considering the uncer-

tainties and the ambiguities of data, possible situa-

tions and their probabilities are calculated; each situa-

tion consists of the description of obstacles and critical

regions between the obstacles. The proposed method

does not generate a precise description of the environ-

ment but e�ciently extracts su�cient information for

vision-motion planning of a mobile robot.

In practical applications, it is unusual that a robot

moves in a completely unknown environment. In most

cases, a robot might be given a rough map of the envi-

ronment; \rough" means that there may be unknown

objects or the map may have an error. In such cases,

by matching the modeling result with the map, more

correct modeling is achieved. Developing an e�cient

matching method is a future work. It is also neces-

sary to extend the proposed method so that it can

incrementally model the environment using data from

a sequence of observations.
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