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Abstract

It is generally very di�cult, if not impossible, for
a robot to perform �ne manipulation tasks without the
bene�t of some form of sensory feedback during ac-
tual task execution. As a result, sensing planning is
an important component in assembly task planning.
This paper describes a method of generating visual
sensing strategies based on knowledge of the task to
be performed. The generation of the appropriate vi-
sual sensing strategy entails knowing what informa-
tion to extract and where to get it. This is facili-
tated by the knowledge of the task, which describes how
objects are assembled. This knowledge, coupled with
known sensor modeling, results in an abstract tem-
plate of sensing strategy called the sensing task model.
By instantiating the appropriate sensing task model at
planning time, the sensing strategy is e�ciently gener-
ated. Our method has been implemented using a laser
range �nder as the sensor. Experimental results in-
volving typical assembly tasks show the feasibility of
the method.

1 Introduction

We have been developing a novel robot programming
system, the APO (Assembly Plan from Observation)
system [4]. The system generates the description of
an assembly task by observing human performance of
the task. The task description is then mapped into an
actual robot to perform the same task.

Uncertainty of robot motion and errors in object
modeling result in inconsistency between the task
description and the world in which the robot oper-
ates. Such inconsistency, which may cause object-
manipulation collision, for example, has been ignored
in the previous system. This paper proposes a method
of automatically generating sensing strategies for vi-
sual feedback in order to resolve the inconsistency.

In assembly tasks, the sensing planning problem [2]
has been mainly concentrated on the sensor placement
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problem, that is, the sensing condition is determined
which satis�es several requirements on imaging such
as resolution, �eld of view, focus and visibility in a
static [1][7][10] or in a dynamic [6] environment. Fea-
tures to be observed are usually given beforehand, and
are not automatically selected from a task or problem
speci�cation.

For sensor planning in inspection tasks, several
methods have been proposed which generate a set
of features to be observed. Features are indicated
directly in the inspection speci�cation [8] or are se-
lected from the speci�cation of entities to be measured
through given knowledge of mapping from measurable
entities of an object to features to be observed [11].

In vision-guided operations, visual sensors should
be strategically placed to extract relevant information
for proper task execution. To determine what infor-
mation is required and where to get it, knowledge of
the task is necessary. Without knowledge of the task,
it is often di�cult to select the appropriate visual fea-
tures to be observed. In addition, resources may be
wasted in tracking uninformative features.

In this paper, we propose a method of generating
visual sensing strategy in assembly tasks by analyz-
ing the task description. In assembly operations, de-
grees of freedom of assembled objects are gradually
constrained. Thus, speci�c degrees of freedom of the
currently manipulated objects need to be observed in
each assembly operation. The description of the cur-
rent operation indicates the degrees of freedom that
should be measured. The description also provides a
set of candidates of features to be observed. Based
on such information, coupled with knowledge of the
relationships between observed features and degrees
of freedom to be measured, the system can then auto-
matically generate a set of features by observing which
the necessary degrees of freedom are measured.

We introduce a new representation called the sens-
ing task model, which is a template of necessary sens-
ing strategy for each assembly operation, for e�cient
generation of sensing strategy. The proposed method
is implemented for a laser range �nder as the sensor.
Experimental results of typical assembly operations
are described.



2 Determining What Visual Informa-
tion is Necessary

Visual information can be e�ectively used in certain
types of assembly operations, while other types can
be performed without visual information if the robot
is capable of compliant motion. In this section, we
�rst describe the task analysis based on face contact
relations between objects. Then, using the result of
the analysis, we explain how to determine what visual
information is necessary for each assembly operation.

2.1 Task Analysis Based on Face Contact
State

We analyze a state of the environment in terms of
face contacts between object surfaces [4]. This anal-
ysis �rst deals with the case where polygonal objects
perform only translational motions, and is extended
later (see Section 2.4). We assume that each assem-
bly operation (i.e., transition of contact state) involves
one manipulated object, manipulated by a robot for
the current operation, and several stationary environ-
mental objects which have face contacts with the ma-
nipulated object. We also assume that the goal of
each assembly operation is to establish the required
face contact state.

2.2 Representation of Face Contact
States

Let us suppose a surface patch of the manipulated
object have a face contact to a surface patch of an
environmental object. This surface contact pair con-
strains the manipulated object's possible translation
motion by:

N ��T � 0;

where �T denotes possible translational motion vec-
tors of the manipulated object andN denotes the nor-
mal direction of an environmental surface patch.

We use points on the Gaussian sphere to specify
both a constraint vector and all possible translation
vectors. Each vector is translated so that its start
point is located at the center of the Gaussian sphere
and its end point exists at some point on the surface
of the Gaussian sphere. We use this point to denote
the vector.

The constraint from a patch pair de�nes several re-
gions in the Gaussian sphere (see Fig.1). Assuming
that the normal, N , points to the north pole of the
Gaussian sphere without loss of generality, the north-
ern hemisphere corresponds to possible motion direc-
tions; the southern hemisphere corresponds to prohib-
ited motion directions.

In Fig. 1, motions of the directions correspond-
ing to the boundary of the southern hemisphere (the
equator) maintain the current face contact state. The
degrees of freedom of the maintaining the contact state
(maintaining DOF) is two. Motions of the directions
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Fig. 1: Constraint depicted on the Gaussian sphere.
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Fig. 2: A bidirectional constraint.

corresponding to the inside of the detaching hemi-
sphere break the contact state, and is referred to as
the detaching motion. A pure detaching motion is the
detaching motion which does not contain any main-
taining motion component. The pure detaching mo-
tion in Fig. 1 is along the constraint normal N ; its
degrees of freedom (detaching DOF) is one.

Fig. 2 shows the case where two normal vectors
of environmental objects have the opposite directions.
The possible motion directions of the manipulated ob-
ject can be represented as the entire great circle per-
pendicular to the axis connecting the two poles. One
direction along the surface normals is completely con-
strained; the degrees of freedom of the constraint di-
rections (constraining DOF) is one.

We can specify a face contact state by using a triplet
of maintaining, detaching, and constraining DOFs.
Using this triplet, for example, the states of Figs. 1
and 2 are represented as (2; 1; 0) and (2; 0; 1), respec-
tively. Each assembly operation is considered as a
transition from one contact state to another. In this
analysis, we extracted ten possible contact states and
thirteen possible transitions [4].

2.3 Determining What Visual Informa-
tion is Necessary

An assembly operation always increases constraints
on some degrees of freedom of the manipulated ob-
ject. This increase of constraint is classi�ed into three
cases: from maintaining DOF to detaching DOF, from
detaching DOF to constraining DOF, and from main-
taining DOF to constraining DOF. Fig. 3 shows typ-
ical situations corresponding to the three cases.

Let us examine how the type of the degree of free-
dom for horizontal motion changes in these cases. In
case (a), the degree of freedom changes from main-
taining DOF to detaching DOF. Since the approach-
ing direction of the block is parallel to the direction of
the pure detaching motion at the �nal state (i.e., the
normal vector of the wall), this operation is realized by
moving the block until the face contact occurs. Thus,
this operation can be performed by compliant motion
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Fig. 3: Three typical cases of increase of constraint.
Types and transitions of the triplet are:
(a): maintaining ! detaching ((3; 0; 0)! (2; 1; 0)).
(b): detaching ! constraining ((2; 1; 0)! (2; 0; 1)).
(c): maintaining ! constraining ((3; 0; 0)! (2; 0; 1)).

without visual information. In case (b), the degree
of freedom changes from detaching DOF to constrain-
ing DOF. Although the horizontal degrees of freedom
is constrained at the �nal state, visual information is
also unnecessary because the desired horizontal posi-
tion can be kept by maintaining the contact between
the block and the right wall.

In case (c), the degree of freedom changes from
maintaining DOF to constraining DOF. The horizon-
tal position of the block needs to be adjusted with
visual information before mating so that both the left
and the right face contact are achieved simultaneously.
Since there is no contact before mating, force informa-
tion cannot be used.1

To summarize, if a degree of freedom becomes con-
straining DOF from maintaining DOF, that degree of
freedom should be observed. By applying this theory
to thirteen possible transitions, four transitions were
found to require visual information [5].

2.4 Extension of Analysis of Face Contact
State

In this paper, we extend the previous contact state
analysis to the case where an object can be composed
of planar or cylindrical surfaces, and where, in ad-
dition to three translational degrees of freedom, one
rotational degrees of freedom is allowed in one face
contact state transition. Fig. 4 shows a typical object
used in the analysis. We limit the contact states of a
cylindrical surface to the three cases where (from left
to right) no contact occurs, contact occurs on half of
its surface, and contact occurs on all of its surface;
these cases correspond to maintaining DOF, detach-
ing DOF, and constraining DOF for the translational
motion perpendicular to the principal axis of the cylin-
drical surface. In this extended analysis, we represent
a face contact state by a sextuplet of DOF, which is
composed of two triplets for translational DOFs and
for rotational DOFs. This analysis can cover a rel-
atively large number of actual assembly operations.
Refer to [5] for details.

1A sophisticated force control-based manipulation strategy
may be employed to perform this kind of assembly operation
without visual feedback [9]. Even in such a case, reducing errors
by visual information would be useful.

Object
three contact states
of a cylindrical surface

Fig. 4: The object used in the extended face contact state
analysis.
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Fig. 5: Transition groups which need visual information.
Thick arrows indicate the direction of movement. Thin
arrows indicate degrees of freedom to be adjusted by use
of visual information. The transitions of the sextuplet are:
(a): (3; 0; 0; 1; 0; 0)! (1; 0; 2; 0; 0; 1).
(b): (2; 1; 0; 0; 0; 1)! (1; 0; 2; 0; 0; 1).
(c): (3; 0; 0; 1; 0; 0)! (2; 0; 1; 0; 0; 1).
(d): (3; 0; 0; 1; 0; 0)! (1; 0; 2; 1; 0; 0).
(e): (1; 0; 2; 1; 0; 0)! (1; 0; 2; 0; 0; 1).
(f): (1; 0; 2; 1; 0; 0)! (0; 0; 3; 1; 0; 0).

The theory to detecting necessary visual informa-
tion is also applicable to rotational motions because
an in�nitesimal rotational motion just before the state
transition is considered as a translational motion. By
applying the theory to the result of the extended con-
tact state analysis, 19 out of 85 transitions were found
to require visual information. Further examination
of transitions in terms of the change of the sextuplet
classi�ed these 19 transitions into six groups. Typical
situations for the groups are depicted in Fig. 5.

3 Selection of Features to be Observed

In each vision-guided assembly operation, a relevant
set of features needs to be selected so that necessary
degrees of freedom of the assembled objects are ob-
served.

3.1 Sensing Primitive

To solve the feature selection problem, we introduce
a concept of sensing primitive. Sensing primitive is an



Task
Description

CAD−Based
World Model

Feasible Set
of Featuers

Observable Feature Set

DOFs to be constrained

Fig. 6: Selection of features to be observed using task
description and sensing primitives.

abstract sensing procedure, which describes the rela-
tionship between an observable feature and degrees of
freedom to be measured. For each primitive visual
feature, such as a straight edge of a polyhedron, one
sensing primitive is prepared. The repertoire of sens-
ing primitives is generated in advance by enumerating
possible geometric features that could appear in the
assembly task under consideration, and that are ob-
servable by the sensor used.

3.2 Feature Selection Process

The feature selection is performed as follows (see
Fig. 6). From the task description, the degrees of
freedom to be constrained by the assembly operation
can be obtained. On the other hand, an observable
feature set comes from the face contact information in
the task description. By consulting prepared sensing
primitives, a feasible set of features is selected. Neces-
sary geometric information in this selection is retrieved
from a CAD-based world model.2

For example, let us consider cases (a) and (b) in
Fig. 5. Suppose that we are localizing the hole by ob-
serving its edges, and that we prepare a sensing prim-
itive to observe a straight edge; this sensing primitive
can measure the edge's position perpendicular to that
edge. Candidate features are four edges of a hole.
In case (b), an edge of the hole perpendicular to the
movable direction of the block provides su�cient in-
formation for localization, while a pair of neighboring
edges should be observed in case (a).

4 Sensing Strategy Generation using
Sensing Task Models

We introduce a new representation termed the sensing
task model for e�cient generation of sensing strategy.
This section �rst explains the APO framework before
describing how the sensing task models are used in the
APO system. Fig. 7 illustrates the outline of sensing
strategy generation.

4.1 Task Model and Sensor Model

The description of a task is stored in a structure
called an abstract task model. An abstract task model
associates a state transition with an assembly task
which causes that transition. Each task model has

2The object recognizer determines each object con�guration
in the real world and generates a CAD-based world model.

slots for necessary information for performing the op-
eration by a robot, such as assembled objects and ge-
ometric relations to be achieved. In addition, the task
model contains a robot motion macro and parame-
ters to expand the macro, such as grasping position,
departing position and approaching position. An in-
stantiated task model, whose slots have actual values,
is generated by observing an assembly operation per-
formed by a human in the APO system. Or, an assem-
bly planner could generate instantiated task models
from the task speci�cation.

The sensor model [3] describes knowledge about a
sensor such as features which are observable with the
sensor, range of the sensor (distance and �eld of view),
and sensor data uncertainty.

4.2 Sensing Task Model

Sensing strategies are dependent upon the sensors
used and assembly operations to be performed. An
abstract sensing task model is generated for a sensor
and an assembly operation (or a group of assembly
operations) from the sensor model and abstract task
models. An abstract sensing task model contains the
following information:

� Transition of the sextuplet
� Which degrees of freedom to observe.
� Feature set to observe
� feasible sensor position set to observe it.

Some of the above information are dependent upon
geometric values (shape and size) of the objects in-
volved in each operation. In order to e�ciently gener-
ate visual sensing strategies, we enumerate in advance
operations which involve objects of typical shapes such
as rectangular parallelepiped or cylinder, and describe
the above information in a parameterized form for
those operations. Parameters (i.e., the size of objects
involved in each operation) are instantiated at plan-
ning time by referring to the instantiated task model.
Fig. 8 shows a parameterized abstract sensing task
model for the operation of inserting a peg with a cir-
cular cross-section into a hole.

For those operations that do not have correspond-
ing parameterized information, the necessary informa-
tion is generated from scratch, that is, the system de-
termines degrees of freedom to be observed, selects
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Fig. 8: An example of parameterized abstract sensing
task model. f1 and f2 indicate faces; e1 and e2 indicate
holes; r is the radius of the cross-section of the peg; � is
determined so that there is no collision of the sensor.
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Fig. 7: Framework of sensing strategy generation in the APO system.

feasible feature, and determines a feasible sensor po-
sition set by considering visibility and detectability of
the features.

4.3 Process of Sensing Task Model Gen-
eration

Before planning, abstract sensing task models are
generated for a sensor model and a set of abstract task
models using the following steps:

1. Collect and classify state transitions in which vi-
sual information should be used. This step is
based on the analysis of transitions of contact
states (see section 2).

2. For each state transition groups, enumerate pos-
sible shapes of objects, for which parameterized
abstract sensing models are prepared. A parame-
terized abstract sensing model is generated in the
following steps:

(a) Determine a feasible sets of features to ob-
serve.

(b) Determine feasible sensor positions the
above set by considering visibility and de-
tectability of the features.

4.4 Automatic Sensing Strategy Genera-
tion using Sensing Task Model

At planning time, given an instantiated task model
and the sensing task models, sensing strategy for the
operation is automatically generated by the following
steps (see Fig. 7):

1. Instantiation. Select the appropriate abstract
sensing task model for the current assembly op-
eration, and instantiate it using actual geometric
values.

2. Candidate generation. From the instantiated
sensing task model, possible sensor positions are
generated. In this step, the possibility of collision
between the sensor and the environment includ-
ing other robots is examined.

3. Selection. Select one of feasible sensing strategies
using a certain evaluation function.

5 Implementation of the Method using
Laser Range Finder

The proposed method has been implemented using
a line laser range �nder (LRF). The LRF emits slit
laser, detects highlighted portion of the object by a
TV camera (see Fig. 9), and obtains a line of 3D mea-
surement. The LRF is attached to a manipulator with
four degrees of freedom, three degrees of freedom for
translation and one for rotation around the vertical
axis.

Every assembly operation that requires visual infor-
mation is a kind of \peg-in-hole" operation. The loca-
tion of a peg is measured by observing its side faces;
that of hole is measured by observing several points
on its edges. Thus, we prepare sensing primitives for
the following four geometric features: a straight edge,
a circular edge, a planar face and a cylindrical face.

We use a sensing strategy as shown in Fig. 10;
data for one assembly operation are collected at sev-
eral position by moving the LRF in parallel with the
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Fig. 9: Laser range �nder.
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Fig. 11: Candidate positions.

insertion direction because the relative displacement
on the plane perpendicular to the insertion direction
is important for the position adjustment of the peg.
We also control the position of the LRF so that each
measured point is kept within a certain area of the slit
laser. Thus, the only parameter that speci�es the po-
sition of the LRF is the angle � between the direction
of the laser and some axis on the horizontal plane (see
Fig. 11).

6 Experimental Results

6.1 Assembly Operation with Visual
Feedback

The process of an actual vision-guided assembly op-
eration is as follows. First, a peg is moved by a ma-
nipulator to the position just before a hole. Then, the
LRF is placed to the planned position, and measures
the position of the hole and the peg. If the estimated
maximum error in the relative position between the
peg and the hole is within the predetermined clear-
ance, the peg is inserted. Otherwise, the peg position
is adjusted and the position is re-observed. This �nal
step is repeated until the relative position becomes
satisfactory, and then the peg is inserted.

6.2 Putting Screwdriver on Bolt

Fig. 12 shows an operation to insert the tip of a
screwdriver into the slot on a bolt head. This oper-
ation belongs to group (c) in Fig. 5. By this opera-
tion, two degrees of freedom are constrained. The face
contacts to be achieved are (f1-f

0

1
) and (f2-f

0

2
). The

candidates for observed features are f1, f2, f3 and f4
for the screwdriver, and e0

1
and e0

2
for the hole.

In this case, because of the geometric constraints
between manipulators, the screwdriver and the bolt
could not be observed at once. Thus, the LRF ob-
served only the bolt since the positional uncertainty
of the bolt is much larger than that of the screwdriver.
Thus, by observing edges e0

1
and e0

2
of the bolt, the op-

eration was completed as shown in Fig. 13.
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(2, 0, 1; 0, 0, 1)
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direction of
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Fig. 12: Contact state analysis of the operation of putting
a screwdriver on a bolt. Transition of the sextuplet of
DOFs (see section 2) is also indicated.

adjust position push screwdriver

2 31

observe the bolt

Fig. 13: The screwdriver was successfully inserted into
the slot of the bolt head.

6.3 Gear Mating

Figure 14 shows a gear-mating operation. This
transition belongs to group (e) in Fig. 5. In this
transition, a priori knowledge about how cogs of gears
are mated is necessary because there are many poten-
tial matches between cogs of gears. First, two virtual
edges e1 and e0

1
are generated; one edge is placed on

the center of the nearest cog (or gap) to the line con-
necting two gear centers; another edge is placed on the
center of the nearest gap (or cog) to the line. Then,
the orientation of the inserted gear is adjusted so that
these two virtual edges are aligned. Fig. 15 shows a
successful gear mating operation.
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Fig. 14: Contact state analysis of gear mating operation.
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Fig. 15: The gears were successfully mated.

7 Conclusion

We propose a method of generating visual sensing
strategies based on knowledge of the task to be per-
formed. We analyze the task in terms of the tran-
sition of face contacts between object surfaces, and
derive groups of assembly operations which require vi-
sual feedback. We introduce the notion of the sensing
task model, which is a template of sensing strategy
generated for each group of operations. By instanti-
ating the appropriate sensing task at planning time,
the sensing strategy is e�ciently generated. We have
implemented our method using a laser range �nder
as the sensor. Experimental results involving typical
assembly tasks show the feasibility of the method.

At present, sensing task models are generated par-
tially manually. Automatic generation of the sensing
task models from the task description and the sensor
model is part of our future work. This work would

make it easier to apply our method to other sensors
such as stereo vision.
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