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Abstract

This paper describes an adaptive robot speed control method for safe and efficient naviga-
tion in unknown environments. Safety and efficiency are usually in a trade-off relationship.
Moving fast increases efficiency but decreases safety due to low reliability in localiza-
tion and environment recognition; moving slowly decreases efficiency but increases safety.
Speed control considering this trade-off is important in the following two cases. (1) When
the robot enters a narrow free space, it needs to control the speed to avoid any collisions by
considering the motion uncertainty. (2) When the robot enters a region whose vacancy (i.e.,
being free) has not been decided yet, it needs to control the speed so that it can observe
the region sufficiently to be confident with the vacancy of the region. This paper proposes
a simple but effective strategy for such a speed control that the robot selects the safest fast
speed. To adopt this strategy, we define criteria for judging whether a speed is safe for
the above two cases. The proposed method successfully made the robot move around in
unknown static environments with adaptively controlling the speed.
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1 Introduction

Mobile robot navigation in unknown environments
has been one of the active research areas in robotics.
Many previous works have been concerned with lo-
calizing a robot and/or generating a reliable map from
uncertain data obtained by internal (e.g., odometry)
and external (e.g., vision and sonar) sensors [1–3].
Their main focuses have been on developing method-
ologies for realizing accurate and reliable localiza-
tion and/or map generation, given a sequence of sen-
sor data and a set of sensor uncertainty models.

Sensor planning is also important in designing sensor-
based robots operating under various uncertainties.
In the mobile robot domain, some dealt with obser-
vation planning issues, especially planning methods
for increasing the quality of maps (e.g., [4]) or for
exploring unobserved spaces (e.g., [5]) or both (e.g.,
[6,7]). The objectives of these planning methods are,
however, mainly for obtaining more information. This
paper, on the other hand, considers another aspect of
planning, that is, a planning for increasing the effi-
ciency of navigation.

Mobile robot navigation can roughly be divided into
two levels: selecting a route and following the se-
lected route. For the first level, several works deal
with observation planning for selecting an efficient
route using probabilistic models of sensor and mo-
tion uncertainties (e.g., [10,11]).

For the second level (i.e., following a route), there are
many works on visual feedback motion control (e.g.,
[12]); they are mainly concerned with development
or application of control theories.

A certain level of accuracy in robot localization is in-
dispensable for a safe navigation. Several works deal
with landmark selection problems in which an appro-
priate set of landmarks is selected for minimizing the
predicted localization uncertainty (e.g., [13,14]). If
we consider the cost of sensing, however, observing

robot

obstacle
target trajectory

uncertainty

viewpoints

goal

Fig. 1. An example of adaptive speed control. Viewpoint intervals are

short in a narrow space.

uncertainty-minimizing landmarks may not be opti-
mal in terms of the cost of reaching a destination; so
it is necessary to consider what accuracy is needed in
each situation.

A general goal of navigation methods is to realize a
safe and efficient movement of the robot. Safety usu-
ally means that the robot does not collide with ob-
stacles. On the other hand, efficiency here means that
the robot can reach a destination in a small amount of
time. These two requirements, safety and efficiency,
are usually in a trade-off relationship. If the robot
moves fast to increase efficiency, the number of ob-
servations usually decreases and uncertainties in lo-
calization and environment recognition thus increase;
this most probably decreases safety. If the robot moves
slowly to increase safety, efficiency will decrease.

To cope with the trade-off, we proposed the strategy
that the robot moves at the fastest safe speed [15]. In
this strategy, by assuming a constant time for one ob-
servation, we first relate the speed with the frequency
of observations and thus reliability of localization or
environment recognition. Then, we define criteria for
judging whether a speed is safe. Finally the robot se-
lects the fastest safe speed. In [15], we used the fol-
lowing criterion. Usually the deviation from a target
trajectory increases as the robot moves faster (i.e.,
the interval becomes longer). If the robot can recover
from the worst (i.e., most deviated) position, which
is predicted for a speed, to the target trajectory with-
out collision, the speed is judged as safe. The robot
applied the criterion to all candidate speeds, and se-
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Fig. 2. Our mobile robot.

(a) Panoramic image.

(b) Panoramic disparity image obtained from (a).

Fig. 3. Omnidirectional stereo generates a panoramic disparity image.

lected the fastest safe one. Based on this simple but
effective strategy, we can naturally realize an adap-
tive speed control as shown in Fig. 1; such a control
scheme is analogous to what we are doing in driving
cars.

The speed control method developed in [15] was for
completely-known environments with given trajecto-
ries. This paper extends that method to unknown en-
vironments. In unknown environments, since the robot
moves while incrementally generating a map, not only
the distance to recognized obstacles but also that to
undecided regions, which have not been sufficiently
recognized as free, needs to be considered in robot
speed control; it is not desirable for the robot to en-
ter such an undecided region from the viewpoint of
safety. An on-line path planning is also necessary in
navigation in unknown environments.

Several speed control methods have been developed
in path planning (e.g., [8]) or reactive control (e.g.,
[9]) contexts. These methods mainly focus on motion
planning for given obstacle information, and do not
explicitly consider the trade-off between safety and
efficiency.

The rest of the paper is organized as follows. Section
2 briefly explains the map generation method that we
have already developed. The process and the result
of the map generation are used for the two kinds of
speed limitations. Section 3 describes the speed lim-
itation based on the distance to undecided regions.

Section 4 describes the speed limitation based on the
distance to obstacles represented in the robot local
coordinates. Section 5 describes the speed control
method considering both limitations, and section 6
shows experimental results using our mobile robot.
Section 7 concludes the paper and discusses several
future works.

2 Map Generation by Integrating Omnidi-
rectional Stereo and Laser Range Finder

This section briefly describes our map generation method
using an omnidirectional stereo and a laser range finder.
Please refer to [16] for more details. Our speed con-
trol method is designed by considering what result is
obtained and how it is obtained by this map genera-
tion method.

2.1 Two range sensors

Our stereo system uses a pair of vertically-aligned
omnidirectional cameras (see Fig. 2). The system can
generate a disparity image of 360 × 50 pixels in size
and 40 pixels in disparity range in about every 0.18 [s]
(see Fig. 3). We also use a SICK laser range finder
(LRF), which is set at the front of the robot so that it
scans the horizontal plane at the height of 35 [cm]
from the floor (see Fig. 2). The resolution used is
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Fig. 4. Determination of cell attributes.

1.0 [deg] per point (i.e., 181 measurements for 180
degrees).

2.2 Probabilistic occupancy maps

We keep a probabilistic occupancy map [1] for each
sensor. The map is the size of 10×10 [m] and divided
into 200×200 cells. Each cell is the size of 5×5 [cm]
and has the probability of obstacle existence at the
corresponding position. The map is described in the
robot local coordinates, centered at the current robot
position and aligned with the robot orientation.

Temporal integration of sensor data is carried out for
each map separately using forward sensor model[17,18].
We adopt the independence assumption, that is, up-
date the probability of a cell independently of other
cells. This assumption seems reasonable when a sen-
sor has a fairly fine angular resolution.

From one observation, we determine the attribute of
each cell as shown in Fig. 4. The figure shows the
attribute determination for a region within one an-
gular resolution. R is the observed distance (by om-
nidirectional stereo or LRF) to the nearest obstacle,
and Rmin and Rmax indicate the uncertainty in range
measurement [19].

Let O be the event that an obstacle is detected. O oc-
curs at occupied cells; the inverse event O occurs at
free cells. For these cells, the update of the probabil-
ity is carried out as follows. Let E be the event that
an obstacle exist, and let P (E) be the probability that

an obstacle exist (at a cell). The posterior probabil-
ity to be obtained by integrating a new observation is
given by the conditional probabilities: P (E|O) and
P (E|O). These probabilities are calculated by the
Bayes’ theorem as follows:

P (E|O) =
P (O|E)P (E)

P (O|E)P (E) + P (O|E)P (E)
,

P (E|O) =
P (O|E)P (E)

P (O|E)P (E) + P (O|E)P (E)
,

where P (E) is the prior probability and E is the
proposition that an obstacle does not exist. Among
the terms in the above equations, P (O|E) and P (O|E)
are observation models [16]; P (O|E) = 1−P (O|E);
P (O|E) = 1 − P (O|E); P (E) = 1 − P (E). The
temporal integration operation for each cell is per-
formed independently of the others (the independence
assumption).

To integrate observations at different robot positions,
before performing the above probability updates, we
transform the map in the previous robot local coor-
dinates into the current local coordinates using the
estimated ego-motion [16].

2.3 Integration of two maps

The two probabilistic maps are integrated as follows.
Since the two sensors may detect different objects or
different parts of an object at a 2D position, a direct
integration of probability values by the Bayes’ rule is
not appropriate [16]. We, therefore, first classify each
cell of a map into four classes and then integrate the
classification results into the free space map.

The classification is carried out in two steps. In the
first step, we use two thresholds. If the occupancy
probability of a cell is larger than the higher thresh-
old (currently, 0.7), the cell is classified as obstacle;
if the probability is less than the lower threshold (cur-
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rently, 0.2), the cell is classified as free space; oth-
erwise, classified as undecided. We further classify
undecided cells into two subclasses, undecided with
observation (mostly for textureless objects in stereo,
which should be observed using only the LRF) and
undecided without observation (for the case of unob-
served regions), using the number of observations of
each cell position.

From the classification results, if both maps says a
cell is free space, or if one map says free space and
the other says undecided with observation, then the
cell is determined to be free in the final map. Other-
wise, the cell is determined to be occupied. The re-
sultant free space map is used for the path planning
of the mobile robot.

2.4 Map generation example

Fig. 5 shows an example movement of our robot. Fig.
6 shows the maps generated after the movement. In
the probabilistic maps, brightness indicates the prob-
ability of each cell being occupied by an obstacle. In
the free space map, white areas indicate free spaces,
among which only the one around the robot is signif-
icant. The maps are drawn in the robot coordinates
centered at the robot’s final position. The table in
front of the robot was correctly recognized by the
stereo, while the LRF detected only its legs. On the
other hand, the recognition by the stereo of the re-
gion near the door on the right failed at many posi-
tions because features are scarce on the door, while
the LRF correctly recognized the region. In spite of
recognition failures by one of the sensors at several
positions, the integrated map reasonably represents
the free space around the robot.

table door

Fig. 5. An example scene.

stereo
probabilistic map

LRF
probabilistic map

integrated
free space map

Fig. 6. Probabilistic maps and a free space.

obstacle

robot

free space
occluded
region

Fig. 7. A robot entering an occluded region.

3 Speed Limitation by the Distance to Un-
decided Regions

This section describes a method for limiting the robot
speed so that the robot does not enter an undecided
region whose vacancy has not been sufficiently de-
cided.

3.1 Basic strategy

Fig. 7 illustrates an example situation where a robot
is entering an occluded region; the vacancy of the
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occluded region or the region near that occluded is
still undecided. As the robot moves, a free region
gradually expands with the accumulation of newly
observed data. Due to observation uncertainties, in
order to be confident with the vacancy of a cell (or a
region), the robot needs to observe it several times.

One motion strategy of the robot is to reach an unde-
cided region at the highest speed and observe there;
but this may result in an undesirable sudden accel-
eration/deceleration. We, therefore, control the robot
speed so that the robot can make a number of obser-
vations large enough to be confident with the vacancy
of the region until it reaches there. We call such a
speed a safe speed.

We define a safety criterion for judging whether a
speed is safe as follows. Let N be the necessary num-
ber of observations of an undecided region; in other
words, we suppose that if the robot observes the re-
gion no less than N times, then the robot becomes
confident with the vacancy of the region. Also let d
be the distance to the region and T be the time for
one observation (considered to be constant). If the
robot speed is v, it can observe the undecided region
d/vT times before reaching the region. The safety
criterion is, therefore, given by:

d

vT
≥ N.

This inequality represents the speed limitation by the
distance to undecided regions.

To adopt this safety criterion, we need to determine
N and d. N is determined by considering the obser-
vation and the map uncertainty model; d is calculated
from the result of a path planning. The next two sub-
sections will explain how to calculate N and d.

3.2 Determining the Necessary Number of Ob-
servations for Obtaining Confidence

To determine the necessary number of observations
(N ), we examined how the probability of obstacle
existence changes as more observations are obtained,
using the observation uncertainty models and the map
generation method. A typical case examined is the
one where the robot is initially 500 [cm] (which is
equal to the maximum observable distance of the stereo)
distant from a front object and the robot moves at
50 [cm/frame] while observing the object using stereo.
Fig. 8 shows the relationship between the number of
observations and the probability P (E) that an object
actually exists at cells in front of the object in the
case where the initial probability is 0.5 (i.e., com-
pletely undecided). In this case, five observations are
needed for the robot to be confident with the vacancy
of the cells (currently, the threshold for judge the va-
cancy is 0.2).

We also examined experimental data which were ob-
tained by moving the robot along a route similar to
the one in Fig. 14. For each cell which was classi-
fied as free space, we examined how many obser-
vations were carried out for changing the cell from
completely undecided to free, and summarized the
examination result into the histogram shown in Fig.
9. The mean of the necessary number of observations
is about five.

From the above results, we consider that the neces-
sary number of observations, N , determined from
the typical case analysis is comparable to that ob-
tained from the experiments; so we currently use five
as N . If we use a different sensor and a map gen-
eration method, the appropriate value of N may be
different from the current one. In such a case, a rea-
sonable value could be determined only by a typical
case analysis.

The robot recognizes a currently-undecided region as
free by accumulating observations of the object be-
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Fig. 8. Decrease of the probability of obstacle existence according to the

number of observations.
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Fig. 9. Histogram of the number of observations for recognizing free

spaces.

hind the region. If the distance to the object is not
correctly measured due to, for example, failure of
stereo matching, the actual number of observations
of the region may become larger than expected, and
the distance to the undecided region may thus be-
come short. The histogram in Fig. 9 includes such
cases. Even if the distance is shorter than expected,
however, the robot can still move safely because the
robot speed is controlled on-line according to the ac-
tual distance to the region.

3.3 Determining the Distance to an Undecided
Region by Path Planning

The distance d to an undecided region is given not
by the Euclidean distance but by the distance along

G0

G2

G1
V0

V1

P0

Fig. 10. Find a feasible via point.

a robot path from the current position to the region;
so the path needs to be calculated in the current free
space. Any path planners can be used because the
speed control strategy proposed in this paper is inde-
pendent of the path planner used. We here describe
our heuristic path planner which considers the driv-
ing mechanism of our mobile robot.

We currently give the robot a destination in the world
coordinates; the robot transforms it to the local co-
ordinates using the estimated robot position. If the
destination is in the local map, the robot uses it for
path planning. Otherwise, the robot selects a tem-
porary destination for path planning in the current
free space which is on the boundary between the free
space and an undecided region and is nearest to the
given destination. Considering the motion constraint
of our robot driven by two powered wheels, we ap-
proximately represent a path of the robot by a se-
quence of circular paths. We use the length of a gen-
erated path as the distance d to an undecided region.

Fig. 10 illustrates the process of path planning. The
planner first calculates the circular path which con-
nects the current robot position (P0 in the figure)
and a destination (G0) and satisfies the orientation
constraint at the current position (arc P0V0G0). If
this path is safe, it is selected. Otherwise, the plan-
ner first searches for the point on the circular path
which is farthest from the free space (V0 is selected)
and draws a line perpendicular to the tangent line of
the circular path there, and selects a temporary des-
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Fig. 11. Collision check of a path.

tination (G1) on the line in the free space. For this
temporary destination, the planner repeats the same
operation until a safe circular path is found (try arc
P0V1G1, select G2, and find P0G2). Then this pro-
cess is iterated with the selected via point (G2) being
the initial position. Currently we limit the maximum
number of iterations of this process to two; in a com-
plex environment, the endpoint of the planned path
may not be the given destination. The robot repeat-
edly plans a new path every time the free space map
is updated, and the path is used for determining the
speed and the turning radius of the robot for the cur-
rent feedback cycle.

In the path planning, original obstacle regions are ex-
panded by two types of margins; one is for consider-
ing the motion uncertainty and the other is for the
robot size. Since the motion uncertainty depends on
the robot speed, we estimate the margin for each can-
didate speed in advance (see Section 4). Concerning
the margin for the robot size, the planner uses the
robot width as the margin in planning a path, and
then verifies the safety of the path by checking colli-
sion on points with a certain interval on the path us-
ing the robot shape, as shown in Fig. 11. If a collision
is detected, the planner goes back to the selection of
via points described above.

(point)
 robot

destination

obstacle

for medium
for slow

for fast

obstacle

Fig. 12. Path planning for a narrow space with multiple speeds.

4 Speed Limitation by the Distance to Ob-
stacles

This section describes a method for limiting the robot
speed based on the distance to nearby obstacles. Since
our previous method [15] was for completely-known
environments and given trajectories, the collision check
was relatively easy. In the current navigation prob-
lem, however, since the robot determines not only the
speed but also the path to follow, we needs to develop
a method for determining both simultaneously.

4.1 Path Planning for Several Robot Speeds

We determine the safety of a speed by judging whether
the robot can pass through a narrow space using the
speed because we are mainly concerned with speed
control in such spaces.

A faster speed results in a larger motion uncertainty
(i.e., a larger margin for path planning) and thus may
make it impossible for the robot to pass through a
narrow space. To find the fastest safe speed, we ap-
ply the path planner to the current free space for all
of possible robot speeds (i.e., multiple margins for
motion uncertainty) and generate the list of planned
paths in the ascending order of their lengths. Then
we see if there is a gap in the list of the lengths; the
existence of such a gap implies that there is a nar-
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row space in front of the robot, and that the robot
cannot pass through it at its fastest speed. In the case
of Fig. 12, for example, the robot can generate paths
to the destination through a narrow space for slow
and medium speeds thanks to relatively small mar-
gins for motion uncertainty, while it fails to generate
such a path for fast speed; as a result, the path length
is longer for the first two speeds and is shorter for the
last one, and there is a gap in the list of path length.

If there is a gap larger than a certain threshold, we
divide the path length list into two groups at the gap,
and consider that the speeds in the longer group are
safe. Otherwise, all speeds are considered safe. Then
the path for the maximum safe speed is selected. In
the case of Fig. 12, for example, the path for speed
medium is selected. At present, we use a set of four
speeds for our robot.

4.2 Selection of Safe Speeds for the Path

The generated path is for a safe speed; the robot,
however, may be able to move faster at the first part
of the path if the obstacles are distant enough. So
we check the collision possibility on the path for the
speeds faster than the corresponding safe speed, and
if a faster speed is safe during at least two cycles of
visual feedback movement, the speed is considered
to be safe. In Fig. 12, for example, the robot may be
able to move at speed fast for a moment on the path
generated for speed medium.

5 Speed Selection Based on Two Speed Lim-
itations

The robot determines the speed by considering the
above two speed limitations. Fig. 13 shows the flow
of speed control. The robot first obtains sensor in-
formation, updates the map, and sets the temporary

select the fastest safe speed v*
which satisfy  v*  < length(p) / NT

plan paths for multiple speeds and
select pair of the path p and
the set of safe speeds.

update map and set local destination

p and v's

p, v*

limitation by
distance to obstacles (sec. 4)

limitation by distance
to undecided regions (sec. 3)

input sensor data

Fig. 13. Flow of speed selection procedure.

destination in the local coordinates. Next, the robot
calculates the paths for the candidate speeds, and de-
termines the path and a set of safe speeds, using the
method described in Section 4. Finally, the robot se-
lects the fastest speed among them which satisfies
the limitation by the distance to undecided regions,
using the method described in Section 3. These pro-
cesses are repeated every time new sensor data are
obtained.

6 Experimental Results

Fig. 14 illustrates a navigation experiment. The envi-
ronment we used for the experiment include various
situations such as a simple corridor with flat walls
and an area with many complex-shaped objects in a
room; it is sufficiently complicated for demonstrat-
ing the performance of our adaptive speed control
method.

We gave the robot only a sequence of four desti-
nations in the world coordinates, and the robot au-
tonomously moved on a path as shown in the fig-
ure by switching the destinations one after another,
with generating maps and adaptively controlling the
speed. The observation cycle, including the stereo
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Fig. 15. Trace of observation points.

and LRF observation, the map updating, and the speed
control, is about 0.3 [sec]. The robot has four candi-
date speeds, 1.1 [m/s], 0.7 [m/s], 0.35 [m/s], 0.2 [m/s];
the maximum speed is almost the same as the walk-
ing speed of an ordinary person. The margins for
the speeds are empirically set to 30 [cm], 20 [cm],
10 [cm], 5 [cm], respectively.

Fig. 15 shows the trace of observation points (where
the robot obtained stereo and LRF data) using our
LRF-based ego-motion estimation method [16]. Points
(a)-(d) in the figure correspond to those in Fig. 14,
respectively. Since the observation cycle is almost
constant, the interval between observation points in-
dicates the robot speed. Although the estimated po-
sition includes accumulated errors, the result of Fig.
15 is enough for examining the changes of the robot
speed, since the accumulated error is sufficiently small
within a short duration.

Fig. 16 shows generated free space maps and planned
paths with snapshots at the above four points (a)-(d).

The robot position is at the center of the maps. At
point (a), the planned path was long enough to enable
the robot to move at its fastest speed. At point (b),
since the observed area was limited by a wall (that
is, the distance to an undecided region is short), the
robot planned only a short path and slowed down. At
point (c), the robot was able to observe a wide area,
so it moved fast again. At point (d), although the
robot had a view beyond a narrow space between a
partition and a cabinet, it slowed down because only
the slowest speed was feasible for passing through
the narrow space. Note that in cases (b) and (d), the
robot slows down before reaching the undecided or
the narrow regions (also see Fig. 15); controlling the
speed beforehand in such a way is important for smooth
movements of the robot.

The total moving distance was about 30 [m] and the
total time was about 45 [sec]. When the robot moved
at the lowest speed throughout the route, it took about
150 [sec]. The proposed speed control method im-
proved the efficiency of navigation about three times
with keeping the same safety.

7 Conclusion and Discussions

This paper has proposed an adaptive robot speed con-
trol method under the map and the motion uncer-
tainty. To solve the trade-off between safety and effi-
ciency in navigation, we first defined the criteria for
judging whether a robot speed is safe. In the case of
moving towards undecided regions, we determined
the number of observations needed for recognizing
the vacancy of undecided regions with confidence,
from the sensor uncertainty model and the experi-
mental data; the number is then used with the dis-
tance to an undecided region for defining the crite-
rion. In the case of passing through a narrow space,
another criterion is defined which uses the results of
path planning with several robot speeds. Once the
criteria are defined, the robot selects the fastest safe
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free space maps
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Fig. 16. Experimental results on free space maps and planned path. Black regions indicate obstacles and are expanded by the margins for the motion

uncertainty and the robot size in path planning.

speed. This simple strategy has been shown to be ef-
fective in controlling a real mobile robot under un-
certainties of observation and motion.

Currently, we treat the reliability of undecided re-
gions uniformly; that is, the necessary number of ob-
servations is set to the same for all undecided re-
gions, regardless of the number of observations so
far. The reliability of each cell should differ from
each other, depending on the observation history of
the cell. A future work is to consider this factor in
determining the necessary number of subsequent ob-
servations for each cell.

The current method assumes static environments, where
a future situation such as the confidence of the va-
cancy of a cell (i.e., the probability of obstacle exis-
tence at a cell) and the distance to obstacles is suffi-
ciently predictable for speed control. Another future
work is to cope with dynamic environments where
moving obstacles such as walking persons make such
predictions and speed control more difficult.
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