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a b s t r a c t

This paper describes a method of robustly modeling road boundaries on-line for autonomous navigation.
Since sensory evidence for road boundaries might change from place to place, we cannot depend on a
single cue but have to use multiple sensory features. It is also necessary to cope with various road shapes
and road type changes. These requirements are naturallymet in theproposedparticle filter-basedmethod,
which makes use of multiple features with the corresponding likelihood functions and keeps multiple
road hypotheses as particles. The proposed method has been successfully applied to various road scenes
with cameras and a laser range finder. To show that the proposed method is applicable to other sensors,
preliminary results of using stereo instead of the laser range finder are also described.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Autonomous outdoor navigation has been one of the active
research areas in robotics, from Navlab [1] to Grand Challenge [2].
For a fully autonomous navigation, the robot has to have many
functions such as route planning, localization, road detection and
following, and obstacle avoidance. This paper focuses on the road
(or traversable region) detection.

GPS systems, combined with an accurate map, can provide
reliable location information for outdoor navigation (e.g., [3,4]).
But for safe navigation, local information on road boundary, such
as curbs and lanes, should be extracted and utilized on-line.

Vision has been widely used for road boundary detection.
Some methods detect road and lane boundaries directly [5,6],
while others first detect road regions using, for example, color
information to determine the road boundaries [7,8].

Range sensing is also popular in road boundary detection
[9–11]. If we use a 2D scanner, however, specific geometric fea-
tures such as guardrails and clear curbs should exist. Using multi-
ple range sensors makes it possible to detect traversable regions
by themselves [2]. Stereo vision can also be used for extracting
road region as a planar region [12]. Using only geometric informa-
tion, however, might not be enough in some roads like a small trail
among low grasses.

One issue in road boundary detection is how to cope with
the variety of road scenes. Effective sensory information for road
boundary detection varies fromplace to place andmultiple sensory

∗ Corresponding author. Tel.: +81 532 44 6773; fax: +81 532 44 6757.
E-mail address: jun@ics.tut.ac.jp (J. Miura).
URL: http://www.aisl.cs.tut.ac.jp/ (J. Miura).

0921-8890/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2011.02.009
features thus need to be utilized. Fusion of range and image data
has been investigated, but mainly for obstacle detection [13,14].
Some works use range information for refining the image-based
road detection process [5,15,2].

Another issue is occasional sensing failures or missing effective
features (e.g., a discontinuity of curbs). Road boundary detection
only from the latest observation might be vulnerable and, there-
fore, model-based filtering approaches are effective. Dickmanns
and Mysliwetz [6] developed a Kalman filter-based method which
estimates the 3D road parameters and the vehicle ego-motion.
Apostoloff and Zelinsky [16] proposed a particle filter-based lane
detector using vision with a simple road model. Kim [17] pro-
posed a robust lane detection and tracking method based on ex-
plicit lane marking detection and particle filtering. Danescu and
Nedevchi [18] proposed a similar method for integrating lane and
curb information obtained by stereo vision. The filtering-based ap-
proach is also effective for reducing the sensing cost because only a
part of sensor data (e.g., some image regions) need to be processed
in many cases. Sehestedt et al. [19] applied a particle filter for de-
tecting lane marking in each image not for tracking them.

Coping with various road types is also an important issue.
Many previous methods deal with only unbranched roads where
detecting a pair of (mostly parallel) road boundaries is the task. In
local roads, however,weneed to copewith frequent road branches.

We have been developing a particle filter-based road boundary
detection method. To cope with various road scenes, the method
uses multiple sensory features obtained by cameras and a laser
range finder. Evidence from multiple features is integrated via
specially-designed likelihood functions. In addition, the method
uses flexible road models which can represent both unbranched
and branching roads and controls the transition from one model
to another using the trends of evidence. Such an integration
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Fig. 1. Overview of the proposed method.

of multiple sensory features and flexible road model transitions
are naturally implemented in a particle filter-based framework.
Previous particle filter-based methods [16–18] use more simple
models for roads and their transitions or rely on the results of
extracting specific features, while our method uses more flexible
models and does not explicitly extract image features, thereby
being more robust to a variety of road scenes.

Another feature of the proposed method lies in its generality in
the sense that it can deal with various road scenes by appropriately
selecting likelihood functions and road models. To show this, we
also describe preliminary results of using stereo instead of a laser
range finder to extract shape features.

The rest of the paper is organized as follows. Section 2 describes
an overview of the proposed method. Section 3 explains the state
vector and the road models for unbranched and branching roads.
Section 4 explains the image and the range data processing for
the importance weight calculation. Section 5 describes the state
transition step in the particle filter which includes robot motion
prediction and road model update. Section 6 shows experimental
results in various road scenes. Section 7 describes an attempt to
use stereo vision instead of a laser range finder in the proposed
framework. Section 8 concludes the paper and discusses future
work.

2. Overview of the method

The proposedmethod adopts a particle filter [20] for integrating
multiple sensory information and formanaging the road shape and
type changes. Fig. 1 shows an overview of the proposed method.
The right-hand side of the figure indicates the iteration of particle
filter-based estimation. The left-hand side indicates the sensor
data processing.

Each particle keeps both the road parameters and the robot
position with respect to the current origin, which is actually the
previous robot pose. There are four steps in the iteration:
(1) The state transition step generates a new particle set. There are
mainly two operations in this step. One is the transition due to the
motion of the robot, which is predicted from the odometry and
image data. The other is road shape and type change which occurs
as a new part of the road becomes visible.
(2) The observation prediction step predicts the next observation
from the robot position and the road parameters.
(3) The weight calculation step first determines the likelihood
functions from the extracted range and image features and then
calculates the importance weight of each particle.
(4) The selective resampling step performs resampling only when
needed. If the so-called effective number of particles is less than
the half of the number of particles, resampling is performed [21].
Fig. 2. A piecewise-linear road model (unbranched road model).

Fig. 3. Gaps between road boundaries for range and image data.

3. Road model and state vector

This section explains our road models and state vector
representations. In the field of road shape design, straight lines,
circular curves, and transition spirals such as clothoids [22] are
usually used. Most previous works also use straight lines and
parametrized curves such as circular ones. Since a greater variety
of road shapes may exist in local environments, however, we use
piecewise-linear road models to represent a local region visible
from the robot. The models are continuously updated as the robot
moves (see Section 5.2).

A state vector includes both the robot position and the road
parameters, with respect to the previous robot local coordinates,
for their simultaneous estimation. The robot position is equivalent
to the ego-motion from the previous position,which is represented
by 2D translation and the rotation.

3.1. Model for unbranched roads

Fig. 2 shows the model for unbranched roads. The model
consists of a set of road segments, each of which is either of circular
or linear type. The ith segment Si is represented by:

Si =

xli, y

l
i, x

r
i , y

r
i , hi, νi

T
, (1)

where (xli, y
l
i) and (xri , y

r
i ) are the left and the right boundary point

positions, hi is the segment length, and νi = 1/ri is the curvature.
The set of segments for each particle has a single width parameter
w, which is also estimated on-line. A gap g between detected
boundary positions by the image and the range sensor is also
estimated (see Fig. 3).

This piecewise-linear model can represent arbitrary road
shapes by using asmany number of segments as necessary, but this
may increase the computational cost and decrease the robustness
to sensor uncertainties. Sowe currently fix the number of segments
to six and h to 1.0 [m].
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Fig. 4. A branching road model (right T-branch).

When the robot moves on an unbranched road, we use the
following state vector:

X =

∆x, ∆y, ∆θ, g l, g r , S1, S2, . . . , S6

T
. (2)

3.2. Model for branching roads

The model for a branching road additionally includes the shape
parameters of the branching part. Fig. 4 shows the model for the
road with the right branch, consisting of the three parts: front,
branching, and rear. The front and the rear part have the same
representation as the unbranched road model.

The branching part Sb has two more parameters than ordinary
segments: wb for the width of the branch and the radius r of the
branching point. Sb is represented by:

Sb =

xl, yl, xr , yr , wb, r

T
. (3)

When the robot moves on a branching road, we use the
following state vector:

X =


∆x, ∆y, ∆θ, g l, g r , S f1, S

f
2, . . . , S

b, Sr1, S
r
2, . . .

T
, (4)
where S fi and Sri are the segments for the front and the rear part;
the number of these segments varies according to the width wb of
the branch. The model for left T-branch has the same form, while
that for crossing has the following form for the branching part:

Sc =

xl, yl, xr , yr , wl

b, w
r
b, r

l, r r

. (5)

4. Image and range data processing for importance weight
calculation

The importance weights of particles are calculated using the
image and the range data. We do not explicitly extract road
boundaries but use likelihood functions for model-based weight
calculation. This section explains the image and the range data
processing as well as the likelihood and weight calculation.

4.1. Range data processing

A SICK laser range finder (LRF) is set at the height of 0.45 [m]
looking downward by 5 [degree] (see Fig. 6). If there is a height
gap at the road boundary (e.g., at a curb position), the sequence
of 3D points forms an L-shape. The nearer the local angle at each
point of the sequence is to 90 degrees, the more likely the point is
on the boundary. The likelihood value is determined by the local
angle using a normal distribution with the mean being 90 degrees
and the standard deviation being 30 degrees, and calculated at
each horizontal position (x). Fig. 5(b) shows an example 3D point
sequence and the corresponding likelihood function obtained in
the scene shown in Fig. 5(a). The right boundary is apparent for
LRF thanks to the bank on the right side, while the left one is almost
undetectable for LRF.

Fig. 6 illustrates the likelihood calculation for a particle. The
road model is mapped on to the road plane and the product of the
two likelihood values at the intersection positions is used.

For branching roads, we also evaluate the ‘‘flatness’’ of the road
surface at the entrance of the branch (i.e., the intersection between
the laser scanning plane and the line connecting two yellow points
in Fig. 4). The likelihood of flatness becomes higher when the local
(a) Input image. (b) Laser data and likelihood function. (c) Intensity gradient image.

(d) Road likelihood image. (e) Color gradient image.

Fig. 5. Likelihood calculation for range and image data.
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Fig. 6. Likelihood calculation for a particle and the laser data.

(a) Input image.

(b) Laser data and flatness likelihood function.

Fig. 7. Flatness likelihood calculation for range data.

angle is nearer to 180degrees. Soweuse a normal distributionwith
the mean being 180 degrees for calculating the likelihood values.
Fig. 7 shows an example likelihood function for flatness.

4.2. Image data processing

We use a LadyBug2 (Pointgrey Research Inc.) omnidirectional
camera system. Two CCD cameras among five are currently used to
cover the field of view of about 144 [degrees]. We use two visual
cues: road boundary edges and road surface color.

Road boundary edges are effective if strong edge segments of
lane markers or shadow boundaries caused by curbs are available.
We first apply a 3× 3 median filter, followed by a Sobel filter with
11 × 11 Gaussian smoothing to calculate the intensity gradient.
Fig. 5(c) shows the intensity gradient image for the input image
(Fig. 5(a)).

To use the color cue, we first estimate the road surface color.
The input image is transformed to a CIE L*a*b* image and the
a*-b* 2D space is used for representing the color. We assume
a single color model and describe the surface color using a 2-D
normal distribution in the 2D color space. Themean vector and the
covariance matrix are estimated on-line using 500 samples on the
estimated road region in the latest five frames (i.e., 100 samples
from one frame). Using the estimated color model, the likelihood
Fig. 8. Windows for calculating the color gradient.

of each pixel in the current image is calculated. Fig. 5(d) shows the
road likelihood image.

The gradient of the road likelihood is then calculated as follows.
Since the direction of the road boundary in the image varies
according to the relative pose between the robot and the road,
we use the windows shown in Fig. 8 to calculate the gradient
as follows. When calculating the gradient for the right boundary,
since the likelihood of the left-hand side is larger, we use:

max (Cb − Ca, Cb − Cc, Cd − Ca, Cd − Cc) (6)

as the gradient value, while for the left boundary, we use:

max (Ca − Cb, Ca − Cd, Cc − Cb, Cc − Cd) , (7)

where C∗ is the likelihood value of the corresponding region in
Fig. 8. Fig. 5(e) is the resultant color gradient image, where the
magnitude of red and blue indicate the degree of being on the left
and the right boundary, respectively.

The intensity and the color gradient image are normalized to the
range [0, 255] and used for likelihood calculation. The likelihood
of a particle for an image feature is calculated as follows. The road
modelwith respect to the robot pose ismapped onto the image and
the gradient values under the mapped boundary are collected and
averaged. This averaged value is then transformed to a likelihood
value ranging [0, 1] using a sigmoid function.

4.3. Importance weight calculation

Six likelihood values are calculated for every combination of the
three features (laser, edge, and color) and the two sides (left and
right). The importance weight of a particle is given by the product
of all likelihood values. In some cases, however, the likelihood
values for a feature on one side become very small for any particles
due to, for example, a discontinuity of curb or strong cast shadows.
In such a case, the weights for all particles become very small and,
as a result, many promising particles might be deleted. To avoid
this, if themaximum likelihood for a feature on one side is less than
a threshold (currently, 0.3), the combination of the feature and the
side is considered not to be effective and is not used.

5. State transition

The state transition step transforms a set of particles to another
set by robot motion prediction and roadmodel update. The former
is carried out by an ego-motion estimation and a probabilistic
sampling. The latter is a key of the proposed method, which
adaptively generates newparticles to copewith road type changes.
Since the robot position and road parameters are represented in
the previous robot local coordinates, a coordinate transformation
is also performed in this step.

5.1. Robot motion prediction from image data and odometry

Robot motion is visually estimated using the eight-point
algorithm [23] and odometry. Harris corners are first extracted
as feature points in the two images (from the two cameras)
and their correspondences are determined between consecutive
images. The features are mapped onto a virtual image plane facing
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(a) Flow vectors (left). (b) Flow vectors (right). (c) Flow vectors (perspective). Red: inliers, blue: outliers.

Fig. 9. Flow vectors for motion estimation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(a) Test course. (b) Estimated motion.

Fig. 10. Motion estimation results.

right forward and then the eight-point algorithm with RANSAC is
applied to the mapped points to calculate the fundamental matrix
(F matrix). Fig. 9(a)–(b) show the extracted flow vectors in the left
and the right image. Fig. 9(c) shows the mapped flow vectors; red
ones are inliers used for F matrix calculation and blue ones are
outliers.

From F matrix we can recover the robot motion up to scale,
which is given by the odometry. When the estimated motion is
largely different from the odometry, we use the odometry value.
Fig. 10 shows an example of motion estimation by image and
odometry. Image data usually give better results; through the
experiments we have done, about 4% of the image-based motion
estimate were rejected as unreliable. A proposal distribution
is defined from the estimated ego-motion and empirically-
determined uncertainty estimates.

5.2. Road model update

As the robot moves, a new part of the road becomes visible.
Since the shape of the new part is unknown, we make a set of
hypotheses for it. In the particle filter framework, this hypotheses
generation (called road model update) is realized by generating
particles with various road models. The road model update takes
place when the robot is judged to enter a new road segment. The
previous segment where the robot was is deleted and a new one is
attached as shown in Fig. 11.

5.2.1. Update for unbranched road
In the case of unbranched road, one usual road segment

is attached. For each particle which should be updated, the
curvature of the attached segment is chosen by sampling. A normal
Fig. 11. Road model update.

distribution of mean 1 [1/m] and standard deviation 0.04 [1/m] is
used as a proposal distribution.

5.2.2. Update for branching road
The branching parts of a road gradually become visible as

the robot moves, similarly to the case of unbranched roads. It
is therefore possible to always make hypotheses of branching
roads when new road segments are attached. Since the number
of branching parts is much smaller than ordinary road segments,
however, such a hypothesis generation may waste particles. We
thus add branching road models only when they are likely to be
approaching.

For this purpose, we examine the trends of the likelihood values
for the intensity gradient, the color gradient, and the flatness
of the road along the direction of the road; we calculate their
averaged values for all particles and describe them as functions
of the distance from the robot along the road (see Fig. 18(c), for
example). If the first two values are below a threshold (currently,
0.2) and if the last value is above another threshold (currently,
0.4) on a sufficiently large part (more than 1 [m] long) in the
trends, then particles are generated which have a branching part
starting at the front end of that part. If such a part exists on the
left (right) boundary, left (right) T-branch models are generated.
If such parts exist on both boundaries, two types of T-branch and
crossing models are all generated.

The process of generating branching road models is as follows.
We first sample an existing unbranched model and replace the
part beyond the branch starting point by an appropriate branching
part model (see Fig. 12). The branching part is generated using
the following proposal distributions: a normal distribution with
the estimated starting point of the part being the mean and
3.0 [m] being the standard deviation for the starting position of the
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Fig. 12. Generating a branching road model.

(a) Course 1. (b) Course 3.

Fig. 13. Two out of three test courses. The other is shown in Fig. 10(a).

branching part, a uniform distribution between 1 and 5 [m] for the
radius r , and a uniform distribution between 3 and 7 [m] for the
width of the branch wb.

5.2.3. Number of particles
We usually keep 500 particles when all models are unbranched

roads. When branching road models are included in the particle
set, we increase the number to 750. When generating branching
road models, we add 50 particles for each model.

6. Experimental results

6.1. Results for unbranched road models

This subsection describes results for unbranched road models.
We used three courses. Fig. 13 shows courses 1 and 3 and Fig. 10(a)
indicates course 2.

6.1.1. Estimation results
Let us consider Fig. 5(a). There is a parking space on the left and

no curb exists there. There is a bank on the right. Range data is thus
effective only for the right road boundary. Concerning image data,
the edge information is more effective on the left, while the color
information is more effective on the right.

Fig. 14 shows the estimation result. Fig. 14(a) indicates road
boundaries obtained from the particle set superimposed on the
input image. To see which feature is effective, we assign the three
primary colors, red, green, and blue, to color, edge, and range
information, respectively. A purple line, for example, indicates that
color and range information support the line. In Fig. 14(a), green
is dominant on the left boundary because edge information is
effective, while red or purple are dominant on the right because
range and color information are effective.

Fig. 14(b) shows a kind of certainty distribution of road regions
in the robot local coordinates, obtained by voting road regions
coming from the current set of particles. Brighter pixels indicate
higher certainties. The green semicircle and the red line in the
figure indicate the robot pose and the center position (i.e., skeleton)
of the road, respectively. The red line could be a guide for
controlling the robot motion.

Fig. 15 shows other estimation results for three different roads.
In the course 3 result, due to less distinct features and an occlusion
by a person, the estimate of a far part of the road is uncertain,
that is, the particle set has a large variety of road parameters. It
is, however, possible for the robot to follow the road because the
estimate of that part becomes clearer as it approaches to the robot.
(a) Estimated road boundaries. (b) Certainty distribution for road region.

Fig. 14. Estimation result for the data shown in Fig. 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
(a) Course 1. (b) Course 2. (c) Course 3.

Fig. 15. Estimation results using unbranched road models for other scenes.
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(a) First course. (b) Second course. (c) Third course.

Fig. 16. Road shape reconstruction results. Blue: road boundaries, Red: estimated motion, Green: motion estimation by odometry. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 17. Effect of image-based proposal and selective sampling.

6.1.2. Reconstruction of the road shape
Each particle has its parent, from which that particle was

generated at the state transition step. By tracing back from the final
set of particles, we can reconstruct the global road shape and the
motion history. Fig. 16 shows the reconstructed road shapes with
the estimated motion histories obtained by the proposed method
and by odometry only. Although the proposed method is intended
for for local road boundary modeling, the global road shapes are
reconstructed reasonably well.

6.1.3. Necessary number of particles
The number of particles affects the estimation performance. By

using a better proposal distribution, it is expected to be able to
reduce the number of particles. Fig. 17 illustrates the relationships
between the number of particles and the success rate for the
threemethods: proposal only by odometry, proposal by image data
and odometry, and proposal by image data and odometry with
selective resampling [21], for course 3 in Fig. 15(c). We ran each
method 20 times for each number of particles and calculated the
success rate. A run is considered successful if the estimation is
judged to be correct until the end by human visual inspection of
the resultant road boundaries mapped onto the image sequence.
The figure shows that both the image-based proposal distribution
and the selective resampling are effective.

6.2. Results for branching road models

Fig. 18 shows a sequence of the estimated branching road
models. Graphs in the figure show the likelihood trends for the
three features and the parts with a possibility of branching.

At step 33 ((a)–(d)), a branching part candidate appears on
the left, although no branches actually exist. A small possibility
of a branch also arises on the right, but it is still too small to
be considered. Only left T-branch models are generated at this
moment. At step 35 ((e)–(h)), all branching models (a crossing and
two T-branches) are generated and evaluated. The right T-branch
models, which are correct, are more highly evaluated as shown
in Fig. 18(f). At step 43, the robot is at the position of the branch
and almost only the right T-branch models remain. After the robot
passed the branch at step 51, only unbranched models exist. There
is a strong edge segment on the left, which leaves the left side with
no branches (see Fig. 5(a)).

Fig. 19 shows the change of the number of particles for each
type. From around step 30, the number of particles increases
because branching roadmodels are added. The number sometimes
exceeds 750 when the resampling is not performed due to the
selective resampling strategy, but it does not diverge. Around step
40, only particles for branching roads exists, because the right
T-branch is correctly recognized.

Fig. 20 shows the results for branching model estimation for
course 2 in Fig. 15(b). The estimation results are mostly acceptable
but wrong models also survive. This is mainly due to poorly
extracted features.

Fig. 21 shows the reconstructed road shapeswith the estimated
motion histories using branching road models for courses 1 and 2.
The right T-branch in Fig. 21(a) corresponds to the one detected
in Fig. 18. Three branches in Fig. 21(b) (from bottom to top)
correspond to the results shown in Fig. 20 (from left to right),
respectively. Note that the first branch in Fig. 21(b) is recognized
as a crossing; this is because some particles corresponding to
crossings, which are shown in Fig. 20(a), happened to survive in
the end, although most of the particles recognized the branch as a
right T-branch when the robot was there.

Fig. 22 shows a failure case for a right T-branch. A strong
backlight prevented a reliable detection of image features and
therefore only range data features were used. Since the LRF detects
only one point on each boundary, many right-curved unbranched
roads survived in this case. This then resulted in examining
inappropriate regions (i.e., regionswhere the actual road boundary
does not exist) on the road for left boundaries thereby increasing
the weights for false left T-branches. Similar cases may happen
when the radius at the entry point of a branch is much larger than
expected. Further analysis of such cases and improvement of the
method will be necessary.

6.3. On-line navigation

The proposed method was implemented on a mobile robot for
an autonomous navigation with on-line road boundary modeling.
The cycle time is about 0.6 [s], among which the particle filtering
part takes less than 0.1 [s]. To navigate the robot on unbranched
roads, a line is fitted to the skeleton of the road region (see
Fig. 14(b)) and a turning radius is selected to follow the line. When
entering a branching part, the robot stops at the center of that
part, rotates by dead reckoning to face a branch to proceed, and
restarts to follow the branch as a new unbranched road. Fig. 23
shows snapshots of an autonomous driving in course 3.
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Fig. 18. A sequence of the estimated branching road models.
Fig. 19. Change of the number of particles for the results in Fig. 18.

7. Stereo-based road boundary detection

The road boundary modeling method proposed in this paper is,
in principle, applicable to any combinations of roads and sensors;
any parametrized road models can be used as long as they have
procedures for road model update and any sensory features can be
used through their respective likelihood functions. To show this,
we describe a preliminary attempt to use stereo, instead of a laser
range finder, for obtaining shape information. Another merit of
using stereo is that we need to use just one stereo camera.
We use a Bumblebee2 (Pointgrey Research Inc.) stereo camera
(100 degree horizontal FOV). The intensity and the color gradient
are calculated in the same way as above from the color input
image, while shape information is extracted from the depth image.
Since we would like to make an image which has high values
at the positions where the height change is significant, we first
convert the depth image into the height image, which represents
the height of each pixel in the robot local coordinates, and then
apply a differentiation with a Gaussian smoothing. Fig. 24(b) and
(c) are the height and the height gradient image, respectively, for
the input image shown in Fig. 24(a).

Once we have the height gradient image, the same procedure
for calculating the likelihood of a particle using the intensity and
the color gradient image can also be applied to that image. By inte-
grating the three likelihood for the road boundary on each side, the
importance weight for that particle is calculated. Fig. 24(d) shows
the estimation result. Similar to the previous case (see Fig. 14),
red, green, and blue are assigned to color, edge, and shape informa-
tion, respectively. In Fig. 24, red and green are dominant on the left
boundary because edge and color information are effective, while
the dominant color is purple on the right because color and shape
(a) Step 24. (b) Step 124. (c) Step 171.

Fig. 20. Estimation results using branching road models for course 2.
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(a) First course. (b) Second course.

Fig. 21. Road shape reconstruction results for branching roads. Blue: road boundaries, Red: estimated motion, Green: motion estimation by odometry. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
estimated boundaries estimated road region

Fig. 22. An incorrect estimate case.
Fig. 23. Snapshots of autonomous driving.
information aremore effective. Fig. 25 shows the estimation results
for three different locations.

8. Conclusions and future work

This paper has described a method of robustly modeling road
boundaries on-line. Multiple sensory features and flexible road
models are effectively integrated in the particle filter framework.
The method has been successfully applied to various actual road
scenes using cameras and a laser range finder. The method pro-
vides a general approach to road boundarymodeling; it is basically
applicable to any roads and sensors if we have appropriate road
models and likelihood functions. This has been shown, to some
extent, by preliminary results using a stereo camera, instead of
the laser range finder, for obtaining shape information of road
boundaries.

To cope with a greater variety of road scenes including open
spaces and slopes, we are planning to extend the road models and
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high

low

(a) Input image. (b) Height image.

(c) Height gradient image. (d) Estimation result.

Fig. 24. Stereo-based road boundary modeling.
Fig. 25. Estimation results using stereo.
their update strategies. Combining the proposed road boundary
modeling with a global localization (e.g., [24]) for realizing an
autonomous navigation in outdoor environments is also future
work.
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