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Abstract— This paper describes a vision-based interface for
instructing robot motion easily. An interface that makes the
robot move in the same way as user’s motion is effective for an
intuitive motion instruction. Such an interface can be realized
by estimating the pose (position and orientation) of the interface
and executing move commands for making the robot take the
same pose. We estimate the pose of the interface by a monocular
SLAM method, which is based on visual features and the
extended Kalman filter. By additionally using an orientation
sensor and an accelerometer, the reliability and the accuracy
of pose estimation are improved. From the estimated pose, the
target values of the robot position and the head orientation
are set and the robot moves to achieve them. We implemented
an experimental system which run in real-time (30 [Hz]) and
successfully applied it to controlling a humanoid robot.

I. INTRODUCTION

Service robots are expected to help human in various ev-
eryday situations. Possible tasks of such robots are: bringing
a user-specified object, cleaning a room, mobile aid, social
interaction. One of the important issues in using such a robot
is teaching, because service robots need to work in various
environment and, therefore, it is difficult to give a robot a
complete set of required skills and knowledge in advance.
This paper deals with instruction of robot motion.

Several methods for robot teaching have been developed
which measure a human demonstration and convert it to robot
commands [1], [2]. These works mainly focus on instructing
robot’s arm and hand motions. In this paper, we take such
an indirect approach but deal with on-line instructing a
humanoid robot to follow a movement.

To instruct a robot motion indirectly, it is necessary to
measure a human motion in some way and to give it to the
robot as the target motion. In this paper, we develop a vision-
based interface by which the user can instruct a robot motion
intuitively by making the robot move in the same way as the
user’s motion; if the user moves forward (backward), the
robot moves forward (backward) and if the user turns right
(left), the robot turns its head to right (left). For this purpose,
we wear an interface device and measure its motion using a
camera and sensors embedded in the interface.

Several wearable systems for pose (position and orienta-
tion) estimation have been developed. Kourogi and Kurata [3]
developed a system which estimates the pose by integrating
data from several sensors attached to a body using Kalman
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filter. Known visual patterns placed in the environment are
additionally used for pose correction. Harada et al. [4]
developed a system for recognizing human motion. They
attach sensor modules to the lower limbs to measure their
motion thereby recognizing the motion type such as walk-
ing and jumping. Several sensors including gyroscope and
accelerometers are used but visual information is not used.
Maeda et al. [5] developed a sensor system called Behavioral
Interface. It can measure full body motion of the user by
wearing a lot of sensors.

This research uses vision as a primary sensor. We adopt
MonoSLAM method developed by Davison et al. [6] which
performs real-time SLAM using a monocular camera. Since
vision information suffers from instability to rapid camera
motions, we additionally use an orientation sensor and an
accelerometer and integrate their data with vision data using
extended Kalman filter (EKF). Data integration basically
follows the formulation by Armesto et al. [7]. The estimated
human pose is used to issue a command for moving a
humanoid robot. We implemented an experimental system
which run in real-time (30 [Hz]) and successfully applied it
to controlling a humanoid robot.

The rest of the paper is organized as follows. Sec. II
describes an overview of the system. Sec. III explains the
pose estimation algorithm using EKF. Sec. IV describes
experimental results on SLAM and robot motion control.
Sec. V concludes the paper and discusses future work.

II. SYSTEM OEVRVIEW

Fig. 1 is the interface which we developed. The interface
is composed of a camera, a 3-axis orientation sensor, and
a 3-axis accelerometer. It performs SLAM by integrating
information from these sensors using EKF and commands
a robot to move using the estimated pose.

The camera is Qcam Ultra Vision by Logicool and the
3-axis orientation sensor and accelerometer are embedded
in InertiaCube3 by InterSense. These sensors are used for
coping with a rapid motion of the interface which causes
image blur.

Fig. 2 is the humanoid robot, Enon by Fujitsu, which has
a wheeled platform and a rotatable head. The connection
between the interface and the robot uses wireless LAN.

III. POSE ESTIMATION USING EKF

We basically use MonoSLAM developed by Davison et
al. [6] for the pose estimation of the interface. This SLAM
method uses only a monocular camera and estimates the
pose of the camera and the 3D map of features around the
camera. The state vector to estimate includes the pose of the

jun
タイプライターテキスト
Proc. 2009 Int. Symp. on Robot and Human Interactive Communication,
pp. 1198-1203, Toyama, Japan, Sep./Oct. 2009.



Fig. 1. Interface which has a camera, an orientation sensor, and an
accelerometer.

Fig. 2. Humanoid robot, Enon by Fujitsu.

camera, the translational and rotational velocities, and the 3D
positions of features in the map. The method requires some
prior known features for defining the scale.

A feature is an image patch centered at a feature point such
as an object corner detected by the interest operator of Shi
and Tomasi [8]. The depth of a feature cannot be determined
from a single image, hence the feature depth is initialized
using parallax obtained by using a few subsequent frames.
This initialization step is performed using 100 particles
representing depth hypotheses along the 3D line from the
position of the camera to the feature at the time of first
detection. The particles which form uniform distribution as
prior distribution exist in range 0.5 [m] to 5.0 [m] along
the line. The initialization step finishes when the particle
distribution converges enough so that it can be approximated
by a 1D Gaussian.

Once a feature is detected in a camera image, the feature
is matched in subsequent frames using the normalized SSD
(sum of the squared differences) correlation to identify the
estimated feature in the 3D map with the feature point in
the 2D camera image. This matching is performed in the so-
called 3σ region defined by the innovation covariance matrix
in EKF, and therefore the matching fails if the camera move
too fast.

To cope with this problem, we additionally use an ori-
entation sensor and an accelerometer. Armesto et al. [7]

developed a method of ego-motion estimation by integrating
data from a camera and an inertial sensor using EKF with
known image patterns (i.e., no map making). The state vector
to estimate includes the pose of robot, the translational and
rotational velocities, the translational acceleration, and the
bias of the accelerometer. The motion model of the robot
considers the tangential and centripetal accelerations. In
addition, since the sampling rates for the sensors are different
from each other, the method can estimate the robot pose
using only vision, only an inertial sensor, or both sensors.

We combine the above two methods for a reliable pose
estimation in a complex environment. That is, we use the
motion model of [7] in the MonoSLAM framework [6].

A. Motion Model [7]

The state vector x̂ and its covariance matrix P to estimate
is:

x̂ =

⎛
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x̂I

ŷW
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where x̂I is the estimated state vector of the interface and
ŷW

i (i = 1, 2, · · · ) is the estimated position of a feature. The
state vector of the interface xI following [7] is:

xI=
(

pW T qWI T vW T ωW T aW T bW T
)T

,

where pW , vW , and aW are respectively the position, the
velocity, and the acceleration of translation of the interface
in the world coordinate frame W , and qWI and ωW are
respectively the orientation and the angular velocity of the
interface. qWI is represented by quaternion and ωW declares
that its norm is a rotation angle and its orientation is a
rotation axis. bW is the bias of the accelerometer.

The motion model of the interface is:

xI(k+1)=
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a′(k)=
−→
j W (k)+−→α W (k)×vW (k)+ωW (k)×aW (k),

where Δt is the time step, a′ is the derivative
of the acceleration containing the tangential and cen-
tripetal components, ⊗ is the quaternion multiplication,
q(ωW (k)Δt+ Δt2

2
−→α W (k)) is a quaternion defined by rota-

tion (ωW (k)Δt + Δt2

2
−→α W (k)), and

−→
j W , −→α W , and

−→
b ′W

are the system noises.
−→
j W is the translational jerk, −→α W

is the angular acceleration, and
−→
b ′W is the variation of the

bias of the accelerometer.

B. Measurement Model [6], [7]

The measurement vector h is:

h =
(

hWI
q

T hW
a

T hi
yα

T hi
yβ

T · · · )T
,



TABLE I

SPECIFICATIONS OF THE ORIENTATION SENSOR

DOF 3 (Yaw, pitch, and roll)
Angular range [◦] 360 (All axes)

Maximum angular rate [◦/s] 1200
Minimum angular rate [◦/s] 0

RMS accuracy [◦/s] Yaw: 1CPitch and roll: 0.25 (25 [◦C])
RMS angular resolution [◦/s] 0.03

Update rate [Hz] 30 (Maximum 180)

where hWI
q is the quaternion of the measured orientation,

hW
a is the measured acceleration, hi

y is the measured position
of the feature in the camera image coordinate frame i, α and
β are the ID numbers of the features measured successfully.

The measurement models of the orientation and accelera-
tion of the interface are:

hWI
q (k) = qWI (k) ,

hW
a (k) = aW (k) + bW (k) ,

and the measurement model of the image patch feature
following [6] is:

hi
y =

(
u v

)T =
(

u0 − fku
yx

yz
v0 − fkv

yy

yz

)T
,

yI =
(

yx yy yz

)T = RIW
(
qW I

) (
yW − pW

)
,

where yI is the position of the feature in the interface co-
ordinate frame I , RIW (qW I) is the rotation matrix defined
by the orientation of the interface qWI . f , ku, and kv are the
camera parameters; f is the focal length and ku and kv are
the pixel densities in the horizontal and vertical directions
respectively.

These models, the motion model and measurement mod-
els, are used to estimate the pose of the interface and the 3D
map through the prediction and update step of EKF.

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENTAL SETTING

We implemented the above algorithms on our interface
(see Fig. 1) and performed SLAM and robot control exper-
iments using it. A note PC for SLAM and robot control
has a 1.33GHz Core 2 Duo processor. The resolution of
the camera image is 320 × 240 pixels. The specifications
of the orientation sensor are summarized in Table I. The
accelerometer which we use is embedded in InertiaCube3.
Its specification is not available; but we experimentally
estimated its accuracy in advance. The interface is mounted
on the right shoulder of the user as shown in the figure.

Fig. 3 shows an experimental environment, and Fig. 4
shows the world coordinate frame W of the environment.
The world coordinate frame is defined as follows: the xW

axis is rightward, the yW axis is upward, and the zW axis
is in the frontal direction from the screen. The initial user’s
position is the horizontal origin point in the environment.
The four corners of the screen are used as prior known
features. The screen is 2.0 [m] forward of the origin point.
The size of it is 0.91 [m] in height by 1.22 [m] in width, and
the center of it is at 1.5 [m] from the floor. Four points are at

Horizontal origin point

Known object

Screen

Fig. 3. Environment for the experiments.

2.00[m]
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W

zW

yW
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1.50[m]
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Known object 
(0.00, -1.45, 1.00)

Fig. 4. World coordinate frame W of the environment.

(0.61, 0.455, 2.0), (−0.61, 0.455, 2.0), (−0.61,−0.455, 2.0),
(0.61,−0.455, 2.0), respectively. The object put in the envi-
ronment is used to a verification of feature mapping.

Common parameters of SLAM are set as follows: Covari-
ance matrices of the system noises, that is, those for the jerk−→
j W , the angular acceleration −→α W , and the variation of the

bias of the accelerometer
−→
b ′W are respectively given by:

Qj = 6.02I,Qα = 9.02I,Qb′ =
(
1.0−5

)2
I.

Covariance matrices of the measurement noises of the
measured orientation of the interface hWI

q , the measured
acceleration of the interface hW

a , and the feature image patch
hi

y is respectively:

Rq =
(
3.0−3

)2
I,Ra = 0.52I,Ry = 1.02I.

B. SLAM

We performed experiments of the pose estimation of the
interface firstly. The experiments include a rough compar-
ison of the estimated horizontal position of the interface
(xW

i , zW
i ) and that of the user (xW

u , zW
u ), the evaluation of

the accuracy of feature mapping using the known object, a
confirmation of effectiveness of the orientation sensor and
the accelerometer, and a validation of real-timeness of the
method.



(a)

(b)

(c)

Fig. 5. Result of the pose estimation. The left column shows the camera
image tracked features, and the right column shows the 3D map. (a) The
1550th frame at (−1.00,−0.50). (b) The 1700th frame is at (0.00, 0.00)
(c) The 1850th frame is at (0.00,−2.00).

In the experiment of the comparison of the positions, we
define the estimated horizontal position of the interface as the
horizontal position of the user’s right toe. We used markers
on the floor to compare the estimated and the actual position
of the interface. The markers were put at (−1.00,−0.50),
(0.00, 0.00), and (0.00,−2.00).

Fig. 5 shows the pose estimation of the interface and the3D
map at each marker. In this figure, the colored point or line
means as follows: the red ones are measured features, the
blue ones are features failing to measure, the green ones are
features which the method does not try to measure since they
are not in the camera image or are too far to measure, the
line in the 3D map is the axes of the world coordinate frame,
the ellipses in the camera image show the 3σ region defined
by the innovation covariance, and the ellipsoids in the 3D
map show the 3σ region defined by the covariance of the
feature’s position.

Table II shows results at each marker. In the results, the es-
timated positions roughly match with the corresponding use
positions, but their difference is larger in the 1850th frame;
the horizontal difference is about 0.38 [m]. The reasons for
the difference are as follows: the measurable features are
distant and there still remains a positional difference between
the user’s shoulder and right toe. Although the position
estimate is not very accurate, since the interface is used

TABLE II

COMPARISON OF THE USER’S POSITION AND THE

ESTIMATED POSITION OF THE INTERFACE

Frame no.
User’s position [m] Estimated position [m]

(xW
u , zW

u ) (xW
i , zW

i )
1550 (−1.00,−0.50) (−1.04,−0.58)
1700 (0.00, 0.00) (−0.10,−0.11)
1850 (0.00,−2.00) (−0.36,−2.11)

Known object

(a)

Known object

(b)

Fig. 6. Result of the feature mapping. (a) The 382nd frame: finish the
depth initialization. (b) The 682nd frame.

on-line with visual feedback with the user, this accuracy is
acceptable, as shown in the robot control experiment below.

In the comparison of the feature mapping, we compared
the position of the known object (Fig. 4) with its estimated
position. The known object was put at (0.00,−1.45, 1.00).

Fig. 6 shows the result of the feature mapping. The feature
of the known object is initialized at (−0.01,−1.66, 1.41)
at the 382nd frame, and estimated at (−0.07,−1.50, 1.06)
at the 682nd frame. There is some difference between the
actual position and the estimated position of the feature, and
therefore the difference of the pose estimation of the interface
such as Fig. 5 (c) occurs.

Next, in the confirmation of effectiveness of the orien-
tation sensor and the accelerometer, we gave the interface
a rapid motion which causes image blur, and compared
the estimation with or without the orientation sensor and
the accelerometer at the origin point of the environment.
Fig. 7 shows the camera image of each frame and the
estimated pose of the interface. The left figure of Fig. 7 (d)
shows that the interface with the orientation sensor and the
accelerometer can cope with a rapid motion. On the other
hand, the estimation without the sensors fails. This result
shows that the orientation sensor and the accelerometer are
effective in rapid motions.

We then analyzed the change of the time for pose es-



(a)

(b)

(c)

(d)

Fig. 7. Rapid motion of the interface. The left column is with the orientation
sensor and the accelerometer, and the right column is without them. (a) The
40th frame. (b) The 50th frame. (c) The 60th frame. (d) 3D map at the 60th
frame.

timation according to the number of features used, in the
case of using vision with the orientation sensor and the
accelerometer. Table III shows the result. From this result,
the estimation time depends on the number of the features in
the 3D map. If the number of features is large, it is difficult to
estimate the pose of the interface in real-time. Since a longer
estimation time tends to cause errors in feature matching,
it might be necessary to use only the near features to the
interface for the estimation using EKF.

C. Robot Motion Control

In the experiment of robot motion control, the interface
commands the robot to move and to rotate its head using the
its estimated pose. The robot, Enon, has a move instruction
which can uses a 2D target position in its world coordinate
frame WE and a head rotation instruction which uses target
pan and tilt angles. We set the target values as follows: the

TABLE III

RELATION BETWEEN THE NUMBER OF THE FEATURES IN

THE 3D MAP AND THE ESTIMATION PERIOD

The number of The estimation The estimation
the features period [ms] frequency [Hz]

4 33.8 29.6
10 34.5 29.0
20 35.1 28.5
30 45.7 21.9

yWE
xWEFront

Right

Left

Back

-45[deg]

135[deg]
-135[deg]

45[deg]

Fig. 8. Definition of the robot direction.

estimated horizontal position of the interface (xW , zW ) is
set to the target position of the move instruction (yWE , xWE)
and the estimated yaw and pitch angles of the interface are
set to the target pan and tilt angles of the head rotation,
respectively.

Fig. 8 shows the definition of the longitudinal and the
lateral direction with respect to the robot. The interface sends
move commands every about one second (corresponding to
32 frames) and rotation commands every about 0.5 seconds
(corresponding to 16 frames). Since it is not desirable to
repeatedly give commands for small movements to the robot,
and since the robot cannot move instantaneously laterally
due to its two-wheel drive mechanism, the interface sends
move commands when the estimated moving distance of the
interface is larger than or equal to 0.2 [m] and 0.8 [m] in
the longitudinal and the lateral direction, respectively. The
maximum speed of the robot motion is set to 0.3 [m/s].
Concerning the rotation of the head, since the movable range
of the head is limited, if the estimated interface orientation is
out of range, the target rotation angles are determined in the
movable range which is nearest to the estimated orientation.
Fig. 9 shows the trajectory of the user’s motion and the initial
robot position. The origin of the robot’s world coordinate
frame WE has an offset of 1.5 [m] on the right of that of the
user’s (i.e., the interface’s) one W .

Fig. 10 shows the experimental result. The initial position
of (a) and the final position of (j) are about the same position.
Although there is currently a time delay between the pose
estimation and the execution of motion commands in the
robot, the robot was able to follow the user’s movement
reasonably well. This result shows the effectiveness of the
interface as the tool for instructing robot motion.



V. CONCLUSIONS AND FUTURE WORK

In this paper we have developed an interface for control-
ling robot motion easily. Using an orientation sensor and
an accelerometer in addition to vision, the interface can
cope with a relatively fast motion for which the estimation
by only vision certainly fails. In the experiment of robot
motion control, although there is sometimes a few second
delay due to some system limitation, the robot can reach
the target pose determined by the interface. The accuracy
of pose estimation and the estimation time are acceptable
for the preliminary robot control experiments, but more
improvements are needed to cope with more rapid and
complex motions.

This system has two advantages; it does not require any
environmental settings except a few known feature points
and does not restrict the user’s field of activities because it
is a wearable system using no environmental sensors.

This paper focused on the pose estimation of the interface
and its use for robot motion control, and does not address
the human-robot bidirectional interaction. Gesture-based in-
teraction or sharing the image data between the robot and
the user are possible extensions for this purpose. It might
also be useful to instruct the robot how to move the hands
by estimating the user’s hand motions.
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Fig. 9. Trajectory of the user’s motion and the
initial robot pose.
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Fig. 10. Experiment of the robot motion control. (a)–(d): Motion. 1 (0–
9 [s]); the user moves backward and the robot follows the motion. (e)–(g):
Motion. 2 (13–20 [s]); the user moves diagonally forward right and the robot
follows. (h)–(j): Moiton. 3 (23–31 [s]); the user moves diagonally forward
left and the robot follows.




