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Abstract 

This paper describes a control method of chasing person by a vision guided mobile robot in 
an unknown indoor environment. The robot obtains the environment information by stereo 
vision and makes a map. From both the map and the observed person position, the robot decides 
the optimal path to chase the person while avoiding obstacles. Since the observation by stereo 
vision may include uncertainty, we model the uncertainty to calculate the reliability of the map 
to be obtained by integrating multiple observation results. 
 
1.  INTRODUCTION 

One of the main issues of autonomous mobile robot studies is sensor data processing and 
planning when the robot has uncertainty in position estimation or in sensing. If the robot has a 
map of the environment, the robot can plan a path and observes landmarks recorded on the map 
for localization on the path [1]. By matching the observed landmarks to the map, the robot can 
move safely. There is a study in which a man guides a robot to the destination in an unknown 
environment [2]; the robot first makes the map of the environment and, then it moves 
autonomously. In our approach, the robot detects a person using vision. It also observes an 
environment by stereo vision to make a map. The robot then decides a path to chase the person 
while avoiding obstacles. The robot does not necessarily move on the path the target has moved, 
but chooses the optimal path. 

Position estimate only by dead reckoning includes uncertainty and this uncertainty is 
accumulated as the robot moves. To reduce the uncertainty, the robot observes the environment 
by stereo vision. This observation has also uncertainty (or an error). For example, the robot 
sometimes observes nonexistent obstacles or sometimes fails to observe an obstacle due to the 
error in stereo matching. To recognize the environment more reliably, we develop the 
following method. 

By modeling the error of observation based on the stereo vision characteristics, the robot 
evaluates the reliability of the observation result. If an obstacle is detected, its probability of 
existence is determined depending on the distance from the robot. The nearer to the robot the 
obstacle is, the larger the reliability is. We then model the positional uncertainty due to 
quantization error in stereo vision by using a two-dimensional normal distribution.  We update 
the existence probability of each obstacle using the Bayes’ theorem. If the robot detects an 
obstacle several times, then the existence probability of the obstacle becomes high. On the 
other hand, if the robot cannot detect an obstacle several times, the probability becomes low. 
The map contains the existence probability in the environment. The robot makes the map by 



 

 

Stereo Vision 

Camera for tracking 

repeating the observation. We also apply the Extended Kalman Filter [3] to reduce the 
uncertainty in motion and obstacle position. 

The simulation of this stochastic model shows the 
effectiveness of the uncertainty model. The experiment with 
the real robot shows the usefulness of the proposed method. 
Figure 1 shows a robot with three wheels. The robot can 
control a steering wheel, a camera head, and speed. A stereo 
pair of cameras is fixed on the camera head. Using the 
steering input and the odometer reading, the robot estimates 
its position by dead reckoning. 
 

2.  DETECTING OBSTACLES BY STEREO VISION 
 
2.1 Stereo Vision System 
We use a stereo vision to obtain range data of the 
environment. In stereo vision, it is necessary to find the 
correspondence between feature points in the left and the 

right images (see Figure 2). After smoothing the input image to suppress noises, we make edge 
images (see Figure 3) ; edges with high contrast are used as the feature points. A pair of points 
is considered to match if the sum of absolute difference (SAD) of  the intensity value of 5ｘ5 
windows W around the points is small enough and minimum among SAD values computed for 
the possible disparity range. SAD is given by the following  
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where IR(i,j) and IL(i,j) represent the intensity values of the point (i,j) in the right and the left 
images, respectively, and d represents the disparity. Figure 4 shows a result of the stereo 
method. In this figure, darker points indicate larger disparities.  

  

           

 

 
 
       Figure 2.  Input Image                                          Figure 3. Edge image       Figure 4. Disparity image 
   

2.2  Uncertainty of Observation     
Once a set of matched feature points are obtained, 

their three-dimensional positions are computed by 
triangulation. If we set each parameter as Figure 5, 
these are given as 
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Figure 1. Mobile Robot 



 

 

Figure 7. Movement of robot 

where xr=(xr,yr,zr)t is a three-dimensional position; x=(x,y) is the 
point of right image; H is the height of the cameras from the; b is 
the distance between the cameras (called baseline); f and d are the 

focal length and the disparity, respectively. 
We consider the three-dimensional position error due to the quantization error in the image. 

Using the Taylor series expansion and neglecting higher-order terms, we linearize equation (2). 
We then model the uncertainty of xr as a two-dimensional normal distribution. The relation 
between the covariance matrix of disparity space (xd=(x,y,d)t) and that of real space is given as 

           cAxx dr += ,  (3)          T
dr AAΛ=Λ ,  (4) 

where 
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3.  DETECTING TARGET POSITION 
 

We assume that the target person wears a colored cap and his height is known. We use the 
auto-tracking function of the camera (EVI-D30:SONY) to track the target. This camera can 
track the target quickly using color information. From the position of the target in the image and 

the pan and tilt angles, the target position xp=(xp,yp) 
is given as (see Figure 6) 

�
�
�
�

�

�

�
�
�
�

�

�

−
−

+
−

+
−

−
−

+

=
)(

tan
tan

tan
tan

)(
tan

tan

cp
t

t

p

p

cp
t

t

p

HH
yf

yf
xf

xf

HH
yf

yf

x

ω

ω

ω

ω

ω

ω

θ
θ

θ
θ

θ
θ

, (5) 

where xｗand yｗ are the position in the image; f is the 
focal length, θｐand θｔ are the pan and the tilt 
angle, respectively. Since the height of the cap may 
change as the target walks, the target position may 
include uncertainty. The positional uncertainty due 
to the height change is calculated similarly to the 
case of stereo uncertainty. 

 

4 UPDATE POSITION OF ROBOT AND            
OBSTACLES 
 
4.1  Uncertainty of Robot Motion 

The position of robot is represented by vector 
xt=[xt,yt,θ t]t. Since the robot motion includes 
uncertainty, we estimate the position of the robot 
with uncertainty. Figure 7 shows the relationship 
between a control value (steering valueλｔ and the 
movement distance  dｔ) and the movement of the 

Figure 5. Geometry of Stereo Vision

Figure 6. Observation of target 



 

 

robot. The position after movement is represented by the following equation [1] (for the case λ
=0). 

(6)                                           )0(

tan

))tancos()(cos(
sin

))sin()tan(sin(
sin

),(1 ≠

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

+

++−++

+−+++

==+ λ

λθ

λλθλθ
λ

λθλλθ
λ

t
t

t

t
t

ttt
t

t

tt
t

tt
t

t

ttt

L
d

L
dLy

L
dLx

dxfx

Since this equation is the non-linear function, we make this function linear as follows. 
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 We estimate the uncertainty of the robot motion by 
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4.2 Robot Position Estimate by Extended Kalman Filter 

The robot records the position of vertical observed segments on the map. Using this segment, 
we update the position of segments on the map and the position of the robot using Extended 
Kalman Filter [3]. In Figure 8, suppose the robot observes segments Mi (i=1～n) recorded in the 
map. Equation (9) is represents the relationships among the position and direction of the robot 
xt=[xt,yt,θt]Ｔ, the position of segments in the robot coordinate system ri=[rxi,ryi,rzi]t and those 
in the world coordinate system Ri=[Rxi,Ryi,Rzi]t. 
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Since equation (9) is a non-linear equation, we make this equation linear as follows. 
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We rewrite the equation (10) as follows. 

Figure 8. Observing a segment  



 

 

Figure 10. Existence probabilities 
              after 7 observations. 
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In equation (12), we can consider that the left side is the observation and the right side is the 
state of the robot. We construct the Kalman Filter based on this linear system as follows. 
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5.  MODELING OBSERVATION AMBIGUITY 
Since the observation result includes matching error, we cannot always trust the detected 

obstacles just by one observation. If the robot detects false obstacles and records them on the 
map, they could be problematic in generating a safe path to the target person.  To solve this 
problem, we take the following strategy. 

1. We consider far range data are less reliable than near range data. 
2. We would like to reject accidentally-detected range data. 

To evaluate the reliability of an observation result, we model the ambiguity of stereo vision 
statistically. The reliability is estimated by equation (13) and equation (14) based on the Bayes' 
theorem. Equation (13) applies to the obstacles that the robot succeeded to detect, and equation 
(14) applies to the region between the robot and the detected obstacle. 
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where P(E(x)) represents the probability that the obstacle exists at position x, and its initial 
value is 0.5. P(O(x)) represents the probability that the obstacle is observed at position x.  

P(O(x)|E(x)) is given as Figure 9; P(O(x)|E(x)) changes depending on the distance from robot. 
Moreover P(O(x)|E(x)) is distributed around the detected position using the model of the 

positional uncertainty of stereo vision. 
))(|)(( xExOP  is set to constant 0.05 at every 

position. Figure 10 shows the result of a 
simulation using this method; the existence 
probability distribution in the environment after 
the robot made 7 observations are shown. In the 

figure, the whiter a point is, the higher the 
existence probability of obstacle at the point is. 

The robot decides the position of obstacles by 
thresholding the existence probability. 

 

6.  PATH GENERATION 
Since the robot has a motion uncertainty and 

the robot is bigger than the target, the path where 
target has moved is not necessarily safe for the 

Figure 9.  calculating P(O(x)|E(x)  



 

 

robot movement. The obstacle regions on the map are enlarged by a half of the robot width and 
the estimated motion uncertainty. We call these enlarged regions dangerous regions as shown in 

Figure 11. The robot decides the path to avoid this 
region. To decide the optimal path for chasing 
depending on the situation, the robot takes following 
steps (see Figure 11). 

The robot chooses the direct path to the last position 
of the target if obstacles do not exist on the path. If it is 
impossible to take such a path, the robot tries to 
generate a direct path to one of the previous target 
positions if the path is not obstructed by any obstacles. 
If the robot cannot take such paths, it chooses the edge 
of  an obstacle which is nearest to the target position as 
the subgoal for chasing. 

 
 

7. CHASING EXPERIMENT 
 

The robot repeats the following steps for chasing: (1) detecting target; (2) obtaining range 
data; (3) updating the map; (4) generating the path; and (5) moving. In this experiment, we used 
a simplified version of map making, where the vision uncertainty due to quantization error is 
not considered; this can still generate a safe path because a enough margin is considered in path 
generation. Figure 12 shows snapshots of a chasing experiment. 

 

 
     Figure 12. Chasing experiment 

8. SUMMARY 
We have proposed a method that the robot can chase a person in an unknown environment 

even if the environment information includes uncertainty. To cope with the ambiguity in 
obstacle detection by stereo vision, we have developed a stochastic model of the ambiguity to 
evaluate the reliability of observation.  Experimental results show the effectiveness of the 
method. 
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Figure 11. The shortest path 


