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Towards Vision-Based Intelligent Navigator:
Its Concept and Prototype

Jun Miura, Motokuni Itoh, and Yoshiaki Shirai,

Abstract— This paper proposes a novel concept ofintelligent navigator
that can give the driver timely advice on safe and efficient driving. From
both the current traffic condition obtained from visual data and the driver’s
goal and preference in driving, it autonomously generates advice and give it
to the driver. Not only operational level advice, such as emergency braking
due to an abrupt deceleration of the front vehicle, but alsotactical level
advice, such as lane changing due to the congested situation ahead, can be
generated. Two main components of the intelligent navigator, the advice
generation system and the road scene recognition system, are explained.
A Three-level reasoning architecture is proposed for generating advice in
dynamic and uncertain traffic environments. On-line experiments using
the prototype system show the potential feasibility of the proposed concept.

Keywords—ITS, intelligent navigator, visual recognition of traffic scene,
hierarchical reasoning architecture.

I. INTRODUCTION

In recent years, there have been growing interests in ITS (in-
telligent transportation systems). One ultimate goal of ITS re-
search is to realize a fully autonomous vehicle [1], [2]. It is,
however, still difficult to achieve this goal because a very high
reliability and safety will be required for deployment. Thus, as
a practical step towards the goal, we propose the intelligent nav-
igator, that can, in place of a human navigator sitting on the
next seat, give the driver appropriate advice on safe and efficient
driving.

To drive to a destination, we first select a route from the cur-
rent location to the destination, and then drive a vehicle to follow
the route. Concerning the assistance to route selection, navi-
gation systems have already been deployed which use various
information such as GPS data, map data, and traffic condition
information provided by local traffic control centers [3]. On
the other hand, the assistance to driving itself is still an active
research area. This is mainly due to lack of reliable sensory
systems and intelligent assistance planner.

Tasks in driving can usually be divided into two levels: at
the higher level, maneuvers such as lane changing and over-
taking are determined to meet the objective of driving (e.g., a
target arrival time) under the constraints imposed by the actual
traffic condition; at the lower level, the selected maneuver is
translated into actual operations of steering, accelerating, and
braking. These levels are called as the tactical level and the op-
erational level, respectively [4], [5].

Operational level driving can be assisted relatively straight-
forwardly using various sensing capabilities such as vision for
lane detection [6] or for detecting other vehicles [7], [8]; if
some dangerous situation arises, the driver can be warned. Sev-
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Fig. 1. Overview of intelligent navigator system.

eral commercial products for local level assistance have recently
been reported [9]. However assistance systems for the tactical
level have little been developed so far.

Sukthankar et al. [5] pointed out the importance of tactical
level driving in realizing safe and efficient autonomous driving.
This is also true for driver assistance systems. Since the quality
of maneuver selection may have considerable effects on safety
and efficiency, it is important to generate advice on appropriate
maneuvers (i.e., tactical level advice) in a timely fashion.

In this paper, we propose an architecture of intelligent naviga-
tor which can generate tactical level advice as well as local level
advice. Fig. 1 schematically depicts the proposed architecture
of the intelligent navigator system. The driver gives the sys-
tem the goal of driving (e.g., the target arrival time) and his/her
preference to specific driving styles (e.g., the driver may want to
avoid lane changing as much as possible). The road scene recog-
nition subsystem recognizes the current traffic situation using
vision. The advice generation subsystem generates appropriate
advice and give it to the driver. The driver may control the vehi-
cle according to the given advice. Since there have been many
works on visual recognition of road scenes, we can adopt their
results to implement our road scene recognition system. Con-
cerning generation of tactical level advice, however, there have
been little previous works; this paper, therefore, focuses on how
to construct such an advice generation system.

In designing an advice generation system, we have to con-
sider the following two issues. One is the uncertainty (or ambi-
guity) in road scene recognition results based on which advice
is generated. The other is the dynamics of road scene; i.e., the
traffic situation evolves as time advances. Therefore, the tactical
level advice should be generated based on the prediction of the
future traffic condition with consideration of uncertainty. As a
mechanism for such advice generation, we propose a three-level
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reasoning architecture with probabilistic traffic modeling.
We have developed an intelligent navigator prototype by com-

bining the advice generation system, which is based on the lay-
ered reasoning architecture, with a vision system to detect lanes
and vehicles. The prototype is for driving on a highway with-
out branches and is implemented as a stand-alone system such
that it is easily installed in a normal, unmodified vehicle. To the
authors’ knowledge, the prototype is the first on-line system for
tactical level advice generation.

It is very costly to always use a real prototype for verifying
the advice generation algorithm and the traffic models. There-
fore we developed a highway traffic simulator; before on-line
experiments, we ran simulated experiments many times to im-
prove the algorithms and the models. The simulator can gener-
ate various traffic conditions by setting the road configuration,
the number of vehicles, and the driving strategy of each vehicle.

The rest of the paper is organized as follows. Section II
describes the proposed three-level reasoning architecture with
comparison with previous works. Section III explains how to
generate tactical level advice; that is, how the driver gives the
system the goal of driving and his/her preferences in driving,
how the uncertain and dynamic traffic situation is modeled prob-
abilistically, and how tactical level advice is generated from such
information. The Meta-tactical level reasoning is also explained
in this section. Section IV describes our simple but robust traffic
scene recognition subsystem. Section V describes preliminary
experimental results. Section VI summarizes the paper and dis-
cusses future works.

II. THREE-LEVEL REASONING ARCHITECTURE

This section describes our three-level reasoning architecture
suitable for advice generation in uncertain and dynamic envi-
ronments.

There have been several works on decision-making consider-
ing the uncertainty and the dynamics of environments. Niehaus
and Stengel [10] modeled the movement of a nearby vehicle us-
ing a probabilistic distribution, which is continuously updated
using the Kalman filtering, and generated a safe plan consider-
ing the probable worst-case scenarios. Only a local and short-
time prediction is performed in planning. Forbes et al. [11]
proposed to model all levels of planning for an automated ve-
hicle using a fixed probabilistic network. Although they pro-
posed an efficient computation method for the network, extend-
ing the approach to more complicated scenarios may still be dif-
ficult because of increasing computational cost. Sukthankar et
al. [5] proposed a distributed reasoning scheme for the tactical
level planning. Independently operating planning modules with
different algorithms vote for the desirable action, and the high-
scored action is selected and executed. The parameters and the
relative weight of each planning module are tuned through an
evolutionary learning method. The proposed scheme seems fit-
ted to the tactical level planning that requires a relatively short-
term prediction.

To make a plan with a long look-ahead tends to be computa-
tionally expensive if all alternatives are considered in every sit-
uation. Moreover, it may be inefficient to always carry out such
a planning. Therefore, we propose to introduce a knowledge-
based meta-level planning (called the meta-tactical level) to
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Fig. 2. Three-level architecture of advice generation subsystem.

control the tactical level, i.e., to adaptively limit the search space
of the tactical level and to activate the tactical level only when
it is necessary, according to both the history of maneuvers and
the current traffic condition. The resultant control architecture
is composed of three levels: meta-tactical level, tactical level,
and operational level.

Fig. 2 illustrates the internal architecture of the advice genera-
tion subsystem, which is based on the above three-level reason-
ing architecture. The meta-tactical level continuously watches
designated events on traffic and, on occurrence of an event, acti-
vates an appropriate tactical level maneuver selection procedure.
Then the tactical level determines the best maneuver to suggest
and give it to the driver. The operational level mainly checks
immediate dangers, such as an abrupt deceleration of the front
vehicle, by watching near surrounding areas of the vehicle.

In robotics, several layered architectures have been pro-
posed. Gat [12] proposed a three-level control architecture
for autonomous robots. In his architecture, called ATLANTIS,
the controller is responsible for controlling primitive activities,
which are usually reactive sensorimotor processes; the deliber-
ator controls time-consuming computational activities such as
planning and world model maintenance; the sequencer coordi-
nates such various activities by initiating and terminating them
according to the current goal and situation. Pell et al. [13] pro-
posed a similar architecture for autonomous spacecraft. Such
works mainly discuss how to integrate deliberative and reactive
activities, which correspond to the tactical- and operational lev-
els of our architecture, respectively. Therefore our approach of
putting a knowledge-based meta-level is different from those of
the previous works; the meta-level can also be applied to their
architectures.

III. GENERATING TACTICAL LEVEL ADVICE

A. Information from the Driver

The intelligent navigator receives the driver’s goal and pref-
erence in driving which are to be used for advice generation.
We represent such information in the forms of loss function and
cost assignment, because a statistical decision theory is used for
advice generation.

Loss function L(t) is used to represent drivers’ requirements
on the time of arrival at the destination (the target exit). L(t)
is defined using the target arrival time ttarget and the estimated
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Fig. 4. Estimated traffic situations and overtaking scenario.

arrival timet. Fig. 3 shows some examples ofL(t). A tighter re-
quirement onttarget is represented by a larger gradient ofL(t).
The loss function could be changed during driving according to
the change of the goal.

CostC is used to represent the driver’s degree of preference
to each maneuver. For example,Cchange is the cost related to
the lane changing maneuver; if the driver puts the largest im-
portance on safety and very much wants to avoid possible risks
related to lane changing, a highCchange is given to the system
so that the lane changing maneuver is least likely selected except
in a truly emergency situation.

B. Tactical Level Reasoning Considering Uncertainty and Am-
biguity of Road Scene Recognition

The tactical level reasoning basically runs as follows. First,
the expectation of the arrival time at the destination when each
maneuver is adopted is estimated from the probabilistic model
of the current traffic situation. Using the estimated arrival time,
we calculate the loss of each candidate maneuver using the loss
function and the cost attached to the maneuver. Finally the best
maneuver is selected which minimizes the loss.

We also consider theambiguity of a recognition result. When
the road is moderately occupied by vehicles, the visual recogni-
tion subsystem attached to the vehicle cannot obtain information
of the whole surroundings due to occlusion and, thus, may not
be able to determine the traffic situation uniquely. In such a case,
the best maneuver in each possible situation isfirst selected, and
then, if a maneuver is selected inevery situation, that one is se-
lected for advice. Otherwise, any advice is not generated. Using
information from the driver, however, a useful advice could be
generated. That is, since the recognition ability of the driver is
usually better than that of the recognition system, the driver may

have more information (e.g., the driver can see the vehicles far
ahead through the windows of the front vehicle). Therefore, the
system providesconditional advice which complimentarily uses
the driver’s recognition ability, when it is useful. An example is
shown below.

Consider the scenario shown in Fig. 41 . The vehicle with
the intelligent navigator (calledMyVehicle, drawn as a painted
rectangle in thefigure) on the left lane2 is approaching the exit
to take. Since the speed in the current lane is becoming a little
bit slow, the intelligent navigator starts thinking of advising the
driver to overtake vehicles ahead. The overtaking maneuver is
generally faster, but there may be risks of lane changing itself
and of missing the exit. We evaluate two maneuvers,keep-lane
andovertake, as follows.

Suppose only vehicles just before and behindMyVehicle are
visible. There are two possible cases for the occluded area:

• congested: vehicles are almost equally placed in the lane
(Fig. 4(a))

• not congested: just a few (slow) vehicles are blocking our
lane (Fig. 4(b)).

The system tries to identify the situation using the method de-
scribed in Section III-C. If the situation is identified, we evalu-
ate candidate maneuvers for the identified situation. Otherwise,
evaluation is carried out for both situations as follows.

Let tA be the estimated arrival time ofovertake maneuver
in the congested situation,tB be that of the same maneuver in
the other situation, andtS be that ofkeep-lane maneuver (the
result of this maneuver is supposed to be equal in both situation).
In addition, the costC = Cchange is considered forovertake
maneuver.

The result of comparison and given advice are as follows:
• If L(tA) + C > L(tB) + C > L(tS), keep-lane maneuver

is always better than the other; the given advice is“Keep
Lane” (see Fig. 5(a)).

• If L(tS) > L(tA)+C > L(tB)+C, overtake maneuver is
always better; the advice is“Change Lane” (see Fig. 5(b)).

• Otherwise (i.e.,L(tA) + C > L(tS) > L(tB) + C), over-
take maneuver is better only inNot Congested situation;
thus, the conditional advice“Change Lane If Not Con-
gested” is generated (see Fig. 5(c)).

C. Traffic Situation Estimation Using Velocity Map

In some cases, it is possible to estimate the situation of oc-
cluded areas by the velocity difference of the two lanes. For
example, normally the velocity difference can be supposed to
be small at the position far from any entrance or exit. If the
velocity of our lane is slower than the other, it is likely to be
that just a few slow vehicles are blocking our lane and it is not
congested.

We verified the validity of such an state estimation using the
highway traffic simulator. We performed simulation run many
times with setting various parameters to vehicles; in each situ-
ation occurred, we recorded the average velocity of both lanes
and, at the same time, manually classified the situation intocon-
gested andnot congested. Fig. 6 shows the compiled result for

1This was originally presented by Sukthankar et al. [5].
2Note that the slower lane is the left one in Japan.
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the case that the distance to the next exit is medium. In thefig-
ure,v1 andv2 represent the average velocity in the slower and
the fast lanes, respectively. The result shows that thecongested
situation occurs when the velocity difference is smaller (the area
in the dotted line) and thenot congested situation occurs when
the velocity difference is large (the area in the solid line). Using
the result, we constructed thevelocity map like the one shown
in Fig. 7 that supports the estimation of occluded areas.
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Fig. 9. Conditions for overtaking.

D. An Example of Probabilistic Traffic Modeling: Overtaking
with Consideration of Approaching Exit

This subsection describes an example of probabilistic traffic
modeling. The situation for modeling is the one shown in Fig.
4(a). Using the model, we calculate the expectation of the ar-
rival time at the target exit when takingovertake maneuver (i.e.,
overtaking front vehicles and returning to the left lane before the
exit).

Let us consider Fig. 8. Letv1 andv2 be the average speed on
the left and the right lanes, respectively, andd be the distance
between vehicles in occluded areas. We model the uncertainty
of d by a normal distribution. Letµ andσ2 be the mean and the
variance of the normal distribution, respectively. These param-
eters are related to the lane speed, and have been empirically
obtained [14]. Givenµ andσ2, the distribution of the current
positionxk(0) of the kth car (k ≥ 2) ahead at timet = 0 is
specified by the following meanuk and varianceσ2

k:

µk = d1 + (k − 1)µ, (1)

σ2
k = σ2

1 + (k − 1)σ2, (2)

whered1 andσ2
1 are the mean and the variance of the distance

to the front vehicle, respectively, obtained by vision.
Let us calculate the probability thatMyVehicle can safely
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takes the exit after overtakingk cars ahead. First, we consider
the condition thatMyVehicle can cut in the space between the
kth andk+1th vehicles (see Fig. 9(a)). The probabilityPik

that
this condition holds is given by

Pik
= P (2s ≤ d), (3)

wheres is the safety margin for entering. Next, consider the
condition thatMyVehicle does not miss the exit. This condition
is restated as the condition that the position ofMyVehicle when
it finishes overtaking thekth vehicle is sufficiently before the
exit (see Fig. 9(b)). The probability that this condition holds is
calculated as:

Pek
= P (xk(tk) + s ≤ xe − tcv1), (4)

wheretc is the time for lane changing,xe is the position of the
exit; tk is the time for overtakingk vehicles. Sincetk satisfies
the following equation:

xk(tk) = xk(0) + v1tk = v2tk − s, (5)

tk is given by

tk =
xk(0) + s

v2 − v1
. (6)

From eqs. (4)(5)(6), we obtain

Pek
= P

(
xk(0) + s ≤ (xe−tcv1)(v2−v1)

v2

)
. (7)

Assuming that the above two conditions are mutually inde-
pendent, the probabilityPk of overtakingk vehicles and then
successfully taking the exit isPk = Pik

Pek
. In addition, the

elapsed timetek
until MyVehicle reaches the exit after overtak-

ing k vehicles is given by

tek
= (xe − µk − s)/v1. (8)

Using the above equations, the expectation of the arrival time
tA (see Sec. III-B) is given by

te = Tn,

Tk = Pktek
+ (1 − Pk)Tek−1 , (k = 1, · · · , n) (9)

T0 = tf ,

wheren is the index of the farthest vehicle thatMyVehicle pos-
sibly overtakes (i.e.,Pin > 0 andPin+1 = 0); tf is the expec-
tation of the arrival time in case thatMyVehicle cannot overtake
any vehicles ahead, and can be calculated similarly to the case
of tA.

On the other hand, the estimated timetS of thekeep-lane ma-
neuver (see Sec. III-B) is given byxe/v1. To verify the feasibil-
ity of the above model, by using the simulator, we calculated and
comparedtA andtS for several combinations ofµ’s (the mean
of distance between vehicles) andxe’s (the distance to the target
exit) in the case wherev1 = 80 [km/h] andv2 = 100 [km/h].
The result is summarized in Fig. 10. From the figure, we see
that the largerµ is, or the largerxe is, the moreovertake maneu-
ver has an advantage. This result seems reasonable compared
with our intuition.

5000.0

4000.0

3000.0

2000.0

1000.0
100.0 125.0 150.0 175.0 200.0 225.0 250.0

distance
between
vehicles

µ
overtake
maneuver is
faster

( tA < tS )

[m]

distance to exit  xe [m]

( tA > tS )

overtake
maneuver is
slower

overtake
maneuver is
impossible

Fig. 10. Comparison of expected arrival times for overtake and keep-lane ma-
neuvers. Gray area indicates the case where overtake maneuver is impossi-
ble because the distance to the target exit is too small compared with that to
the front vehicle.

E. Other Probabilistic Models

We classified possible situations which may occur in highway
driving and, for each situation, we constructed similar proba-
bilistic models to calculate the expected arrival time of each ma-
neuver [15]. In addition to the situation described above, models
are constructed for the following situations: overtaking near the
target exit without congestion (see Fig. 4(b)), overtaking near an
entrance or an exit which MyVehicle does not take, overtaking
without consideration of any entrance or exit, and lane chang-
ing for exiting. An appropriate model for the current situation is
selected on-line using the meta-level reasoning described below.

F. Meta-Tactical Level Reasoning

The meta-tactical level (see Fig. 2) continuously watches im-
portant events on traffic. Examples of possible events are: the
average speed of the current lane slows down; the exit is ap-
proaching. It also periodically updates the estimate of the arrival
time.

It is inefficient to always check all events. It is also annoy-
ing for the driver to be given the same advice such as “Keep
Lane” again and again. Therefore, we need to make the sys-
tem monitor only selected events which are considered to be
important in the current state. To realize such an adaptive fo-
cus of attention, we construct a state transition graph shown in
Fig. 11. For each state, possible events and their corresponding
tactical level reasoning procedures are retrieved from the graph.
For example, at state [Exit: Medium, Lane: Left]
(which means that the distance to the exit is medium and the
vehicle is on the left lane), possible events are: (1) the speed
becomes slower (Speed: Slower); (2) the estimate of the
arrival time is updated (Estimate arrival time); (3) the
exit becomes near (Exit: Near); and (4)the driver changed
the lane without advice (Change lane by the driver).
For the first two events, the tactical level planning overtak-
ing with approaching exit is executed. For the last
two events, only the state update is performed. The current tran-
sition graph is based on the following assumptions: there are



6

from Entrance to ExitExit: Near

Overtaking
at other entrances

Overtaking
at other exits

move
forward

change
lane

Overtaking with
approaching exit

move
forward

change
lane

change
lane

move
forward

Lane change
for exiting

change
lane

move
forwardenter

exitmove
forward

Overtaking

change
lane

move
forward

Lane change
to the right

move
forward

change
lane

Lane change
to the right

Exit: Medium

Exit: Medium

Speed: Slower
Position: Other Exit

Speed: Slower
Position: Other Entrance

Exit: Near state

state
transition

state

event
to check

tactical level
planning

activate
tactical level

Estimate
arrival time
(periodical)

Estimate
arrival time
(periodical)

Exit: Far
Lane: Left

Exit: Medium
Lane: Left

Exit: Near
Lane: Left

Exit: Medium
Lane: Right

Exit: Far
Lane: Right

move
forward

Change lane
by the  driver

change
lane

change
lane

Speed: Slower

Estimate
arrival time
(periodical)

Estimate
arrival time
(periodical)

Change lane
by the  driver

change
lane

change
lane

Fig. 11. State-transition graph for meta-tactical level.

Exit 1 Exit 2Entrance 1 Entrance 2

0 300 1500 2100 4500 (m)

Fig. 12. A highway configuration for simulation.

only two lanes and no branches; the right lane is always faster
than the left. It is, however, not difficult to extend the graph to
remove such assumptions.

G. Simulation Results

We tested the tactical level reasoning using the highway traffic
simulator. Fig. 12 shows the highway configuration used for
simulation. MyVehicle enters at Entrance 1 and exit from Exit 2.
The loss function used is:

L(t) =
{

0 t ≤ ttarget

(t − ttarget)2 t > ttarget
(10)

Other vehicles are set to have their own target speed and distance
to the front vehicle, and to overtake whenever a slower vehicle
is ahead.

We examined the variation of driving of MyVehicle, which
is assumed to always follow the generated tactical level advice,
for various target arrival time ttarget and the cost of lane chang-
ing Cchange. For each parameter set, we ran the simulation 15
times with setting the parameters for other vehicles randomly,
and calculated the average number of lane changes and the aver-
age arrival time. Table I summarizes the result. The earlier the
target arrival time is, or the smaller the cost of lane changing is,
the more MyVehicle performs lane changing. Since this result
coincide with our intuition, we think our tactical level reasoning
is effective.

IV. ROAD SCENE RECOGNITION

This section describes the road scene recognition subsystem
(see Fig. 1) which detects lanes and vehicles. Although many
works uses stereo vision (e.g., [16], [17]), that requires more
cameras and more computing power than using a single camera.
We, therefore, use a single camera for each direction (front and

TABLE I

Number of lane changes (left) and actual arrival time in seconds (right).

                  100               400                 900               1600

160       2.7   178.9    2.1   181.3     1.7   182.5     1.5   188.5
170       2.4   180.3    1.9   181.9     1.8   186.7     1.5   188.5
180       1.9   180.5    1.3   183.5     0.9   187.1     1.0   192.9
190       1.7   184.5    0.9   187.1     1.0   192.9     0.7   197.3
200       0.9   187.1    1.1   193.0     0.7   197.3     0.5   198.6

Cchangettarget

rear). The rear-directed camera is used for recognizing the ve-
hicles passing from the rear in order to check the safety of lane
changing maneuver. The effective use of the rear camera will be
shown in Sec. V-B. We use shadows under vehicles as the cue
for vehicle detection [18].

For the purpose of driver assistance, the recognition system
has to process images almost in real-time. On the other hand, we
have to consider the uncertainty in visual information for reli-
able recognition. Therefore, we have decided to adopt a simpler
image processing for each frame with an explicit uncertainty
modeling, and to statistically integrate information from an im-
age sequence to reduce the uncertainty.

The recognition process is composed of the following steps:
1. Detect lane boundaries and estimate the position of MyVe-

hicle.
2. Detect other vehicles and estimates their relative position,

relative velocity, and their uncertainties.
3. Make correspondence between frames and integrate data

using Kalman filter.
4. Track vehicles based on template matching.

A. Lane Boundary Detection and Vehicle Position Estimation

First, the system extracts white regions corresponding to the
two white boundaries of the current lane by thresholding the
image and labeling. Then, a line is fitted to each set of white re-
gions. The region between the two lines is considered as the cur-
rent lane. Using the width of the lane, the image regions of other
lanes can be extracted. Figs. 13(a)-(c) show an input image, the
detected white regions, and the detected lane boundaries. From
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Fig. 13. Lane and vehicle detection.
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the detected boundaries, the lateral position of MyVehicle (i.e.,
the lane on which MyVehicle is) is determined. The longitudinal
position of MyVehicle is estimated by observing the dashed lane
boundaries between lanes. The size and the relative position of
such lane boundaries are determined by traffic regulations. By
counting how many such boundaries pass MyVehicle, the system
can roughly estimate the longitudinal position from the starting
point. From the map of the road and this longitudinal position,
the system estimates the distance to an entrance or an exit, and
if the distance becomes less than a certain threshold, MyVehicle
is considered to reach the entrance or the exit. The empirical ac-
curacy of the longitudinal position was a few hundred meters for
a driving of about 12 km. This accuracy will easily be increased
by using GPS systems.

B. Vehicle Detection

Once the lane regions are extracted, the system searches them
for vehicles. Since there is a shadow area under a vehicle, we
extract a dark region whose brightness is less than a threshold,
which is adaptively determined by the mean and variance of
the histogram derived from brightness on the lane region (see
Fig. 14). Fig. 13(d) shows the extracted shadows for the im-
age shown in Fig. 13(a), which are the candidates of the vehicle
position.

Fig. 15 is the projection of shadows and the detected vehicles

0 10 20 30 40 50 60 70 80
distance [m]

0

2

4

6

-2

-4

-6

Fig. 15. Projected vehicle position.
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Fig. 16. Calculation of vehicle position and uncertainty.

(dotted rectangle) on the road surface. Since the approximate
size of vehicles is known, the shadows of different sizes are de-
termined not to be vehicles.

For each vehicles, we calculate the longitudinal position zi

and its uncertainty σ2
zi

(see Fig. 16) by:

zi =
fh

yi
,

σ2
zi

=
(

fh

y2
i

)2

σ2
y =

z4
i

(fh)2
σ2

y , (11)

where yi is the averaged vertical position of a dark region and
σ2

y is its variance; the uncertainty of the image position is mainly
due to the quantization error.

C. Making Correspondence over Frames

We make correspondence of extracted vehicles over frames
for reliable recognition. A newly obtained vehicles is matched
with a previously detected vehicle if:

1. Both are on the same lane, and
2. The difference of positions is within a certain range com-

puted from the previous uncertainty estimate.
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TABLE II

Processing time.

process                              time (msec)

lane boundary detection               4
vehicle detection                          4
filtering                                       20
tracking                                       17

total                                             45

Image merger

road scene
recognition

advice
generation

PC
Advice

Fig. 17. Configuration of prototype system.

The data of a matched vehicles is integrated with the previous
data using Kalman filter [19].

D. Tracking using Template Matching

When a vehicle is detected, the corresponding image region
of a certain size is registered as a template. Then the vehicle is
tracked by template matching based on the normalized correla-
tion, and the result of the tracking is used for the check of lane
changing motion of other vehicles. The rectangles in Fig. 13(e)
show the results of template matching (each white rectangle in-
dicate a template). The relative position and velocity of each
vehicle are also indicated below the template.

E. Processing Time

Table II shows the computation time for each step of recog-
nition. We used a PentiumII-400MHz PC with Hitachi IP-5000
image processor and measured the time for the case where three
vehicles are being tracked.

V. EXPERIMENTAL RESULTS

A. Prototype System and Experiments

Fig. 17 shows the overview of the prototype system. Two
cameras are used to see the forward and the backward directions.
Another camera will be used for observing the driver’s behavior
(e.g., response to the advice); at present, the system detects just
the direction of the face, and the information is not used for the
assistance. Two subsystems are working on one PC (Pentium-II
400MHz), and the processing ability reaches 10 frames/sec.

We show the result of an on-road experiment. The vehicle ran
from Toyonaka entrance to Ibaraki exit of the Meishin express-
way; the travel distance is about 12 km. We gave the system the
loss function indicated by eq. (10), target arrival time ttarget =

TABLE III

Measured values and estimated times and losses.

triggered time  t                       126.5 (sec.)
distance from the entrance       2783 (m)
average speed    left                 21.9 (m/sec.)
                          right               25.3 (m/sec.)
estimated           keep lane       421.0 (sec.)
arrival time        change lane   364.3 (sec.)
estimated loss    keep lane       7638.8
                          change lane    3448.6

26.4
-0.8

24.3
-1.9

(a) t = 48.9

(b) t = 50.2

Fig. 19. The driver is advised (warned) to brake.

460(sec), and the cost of lane changing Cchange = 2500. This
cost means that 50 seconds delay is allowed in exchange for
lane changing. The actual arrival time was 527(sec.); during
the travel, the system generated the tactical level and the local
level advice 5 times and 10 times, respectively.

B. Tactical Level Advice

Fig. 18 shows the situation where tactical level advice
“Change to Right Later” was generated due to a reduction of
the speed of the current lane. The upper-left and the upper-right
part of each image are respectively the forward and the back-
ward view. The lower-left part is the observation of the driver,
and the advice is displayed on the lower-right part. The cor-
responding 2D map of vehicle placement (i.e., relative position
and velocity) is also shown at the side of each image. In the
map, dotted rectangles indicate vehicles which are invisible but
are being tracked by the Kalman filter.

In this case, by referring to the velocity map, only the situ-
ation Congested was selected. Table III summarizes the mea-
sured values of the road scene and the estimated times of arrival
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29.7
  2.6

-16.9

-26.8
    0.4

    3.2

(a) t = 121.7

16.6
  2.9

21.8
  0.8

-20.8
  -1.1

(c) t = 131.9

19.3
  0.1

-20.5

 1.7
 3.3

  -0.4

(b) t = 127.3

-18.8

21.0
  4.4
20.8

-0.1

  -0.7

(d) t = 135.3

Fig. 18. The driver is advised to change lane later.

at the goal and their losses. The maneuver “Change Lane” was
selected at the tactical reasoning module, but on the faster lane
there was a passing vehicle. The vehicle, which had been de-
tected by the backward camera (see Fig. 18 (a)), was tracked
by filtering although it was not detected by two cameras at the
moment (Fig. 18 (b)). Thus, the system advised the driver to
“Change to Right Later” (Fig. 18 (b)) (Note that the advice in
the parentheses means that the action should be executed later).
Following the advice, the driver checked the faster lane (Fig. 18
(c)), and changed to the lane after the vehicle had passed (Fig.
18 (d)).

C. Operational Level Advice

Fig. 19 shows the situation where a local level advice “Brake”
was generated due to the deceleration of the front vehicle. At
present, this advice is generated if the following condition is
satisfied:

dcurr + vcurrTf < dthresh, (12)

where dcurr (vcurr) is the current relative position (velocity) of
the front vehicle with respect to MyVehicle; Tf is a constant time
duration (currently 3 (sec.)); dthresh is a threshold (currently 20
(m)). In the case of Fig. 19, dcurr and vcurr were estimated as
24.5 (m) and -2.0 (m/sec.); thus, the relative position after Tf

(sec.) was estimated as 18.5 (m), which is less than dthresh.

VI. CONCLUSIONS AND DISCUSSION

This paper has proposed the concept of intelligent navigator
that can give the driver timely advice on driving in a dynamic
and uncertain traffic environment. The intelligent navigator sys-
tem is composed of the advice generation and the road scene
recognition subsystems. We have proposed a three-level reason-
ing architecture for tactical level advance generation. We also

constructed a prototype system and conducted experiments on
the actual highway. The experimental results show that the in-
telligent navigator can provide reasonable advice on-line.

Experimental evaluation of the system like the intelligent nav-
igator is, however, difficult because traffic situations that we
would like for evaluation do not necessarily occur at the time of
experiments. So we tested and improved our advice generation
strategy by performing simulation repeatedly for various simu-
lated traffic situations, and then, implemented it on the prototype
system. We conducted several on-road experiments; during the
experiments, one of the authors actually drove the vehicle, and
followed the advice when it was generated. His subjective im-
pression is that most of advice were generated in appropriate
timings.

It is not an easy work for the driver to give the loss function
and the cost assignment, which are used in the tactical level rea-
soning. We are planning to employ a learning-based approach
in which the parameters are continuously refined through the in-
teraction with the driver.

To deploy the intelligent navigator, the following two issues
should be solved. One is the reliability of road scene recogni-
tion. The current vision algorithm works well under good light-
ing conditions but is not robust against drastic weather changes.
We are working on developing more reliable image processing
algorithms. Using other kinds of sensors such as millimeter-
wave radar [20] may be a practical way. The other issue is the
use of (more) global information for increasing the reliability
of advice. From the on-vehicle sensors, only the information in
the local area can be obtained and more global information is
estimated from such local information. For example, we cur-
rently estimate the situation of occluded areas indirectly using
the speed difference between lanes. It is useful to use roadside
cameras [21], if available. In addition, more global information
such as the congestion status on a far away location, which will
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come from various traffic information systems [3], would also
enhance the reliability of advice.
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