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Abstract— This paper describes a view planning of multiple
cameras for tracking multiple persons for surveillance purposes.
When only a few active cameras are used to cover a wide
area, planning their views is an important issue in realizing a
competent surveillance system. We develop a multi-start local
search (MLS)-based planning method which iteratively selects
fixation points of the cameras by which the expected number
of tracked persons is maximized. Considering the fact that a
person’s motion can be estimated with its intermittent obser-
vations, we set a criterion which encourages frequent shifts of
fixation points and develop a procedure for generating promising
initial solutions for MLS. The method is shown to outperform
the other approaches. We then modify the method such that
it dynamically divides the cameras into mutually independent
groups and determines fixation points within each group. The
modified method is comparable to the original one with a much
lower planning cost.

I. INTRODUCTION

Visual surveillance is one of the active research areas in
computer vision. Most previous works are concerned with
development of image processing algorithms for detecting
persons or vehicles reliably and/or for analyzing their activities
[9], [13], [1]. This paper focuses another important problem
in surveillance, namely, view planning of cameras.

One way to cover a wide area for surveillance is to use
many fixed cameras whose fields of view collectively cover the
area. This is, however, costly and sometimes difficult due to
installation problems. We therefore take an approach of using
a small number of active cameras; by appropriately controlling
the fixation points of the cameras, the whole area, although it
cannot be covered at a time, will be covered within a certain
period of time. A key to effective surveillance in this approach
is view planning of cameras.

There are several approaches to view planning of cam-
eras/sensors. Each of them dealt with different planning prob-
lems/solutions.

Ukita and Matsuyama [14] developed a method of tracking
multiple target by multiple active cameras. Multiple vision
agents, each of which is responsible for controlling one
camera, dynamically form several agencies (set of agents)
according to the number of targets and their situations. Karup-
piah et al. [6] proposed a method of dynamically configuring
multiple cameras so that a target can be tracked reliably, using
a utility function evaluating the measurement accuracy and
the predictability of possible events. These works dealt with
tracking of a few persons in a relatively small area.

Horling et al. [3] dealt with a cooperative vehicle monitoring
by a distributed sensor network. They formulate the problem
as a resource allocation problem in which what area to
be sensed by each sensor and what information should be
communicated are determined with consideration of sensor
and communication uncertainties. Isler et al. [4] developed
algorithms for assigning targets to multiple cameras so that the
expected error in the target location estimation is minimized.
These works treated the case where the number of cameras is
relatively larger than that of targets.

Jung and Sukhatme [5] dealt with a coordination of multiple
mobile robots to track multiple targets. They calculate the
urgency over the field and use it to distribute the robots. The
evaluation of urgency is based on the current distribution of
targets not on a prediction of future states.

Miura and Shirai [11] dealt with a multi-camera multi-
person tracking problem in the context of parallelization of
planning and action. They used a heuristic planning algorithm
which iteratively refines the assignment of persons to cam-
eras, formulated as an anytime algorithm [2]. In determining
fixation points, the algorithm uses one-step lookahead.

Krishna, Hexmoor, and Sogani [8] developed a view plan-
ning algorithm for a multi-sensor surveillance system. To avoid
a combinatorial explosion, they dynamically prioritize the
sensors based on their predicted coverage of targets. Coverage
prediction is performed using statistical knowledge of the
target distribution; however, they do not predict the respective
motion of each person.

This paper deals with a view planning of multiple active
cameras for tracking many persons. The rest of the paper
is organized as follows. Sec. II defines the multi-camera
multi-person tracking problem (called MCMP problem). Sec.
III describes a model of person motion and a method of
calculating the expected number of tracked persons for each
camera view. Sec. IV proposes an evaluation criterion which
encourages frequent changes of fixation points of cameras.
Sec. V explains a multi-start local search-based planning
method with an effective initial solution generation and shows
that the method outperforms the others. Sec. VI modifies the
method such that it dynamically divides the cameras into
mutually independent groups and determines fixation points
within each group. The modified method is shown to be
comparable to the original one with a much lower planning
cost. Sec. VII summarizes the paper and discuss future works.
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Fig. 1. MCMP simulator. Small black cones and circles on the floor indicate
persons and field of views of cameras, respectively.

II. MULTI-CAMERA MULTI-PERSON TRACKING PROBLEM

This paper deals with the following MCMP problem. There
are Np persons arbitrarily walking in a room. There are
Nc (� Np) cameras fixed on the ceiling of the room so
that no occlusions between persons occur. Each camera can
change the viewing direction within a predetermined range.
A single planning process controls the viewing directions of
all cameras. The goal of the whole system is to track as
many persons as possible during a certain period of time.
Each camera is assumed to be able to identify any person
and measure his/her position/velocity, as long as the person is
inside the field of view (FOV) of the camera.

We made a simulator for the MCMP problem, as shown in
Fig. 1. In addition to the general problem description above,
we use the following detailed settings. Cameras are installed
on the ceiling of 10[m] high. The FOV of a camera is assumed
to be always a circle of 10[m] radius; view planning of a
camera is thus equivalent to selecting its fixation point (the
center of FOV) on the floor. A camera can move the fixation
point within the circle of 10[m] radius centered at the home
position right below the camera. The maximum speed of
moving the fixation point is 2.5[m/s]. The floor is discretized
as a grid with 1[m] regular spacing and fixation points of
cameras are limited to grid points. The cameras observe and
change fixation points at the cycle of 1[s].

Concerning the number of cameras and the size of the room,
we use the following two cases. In the four-camera case, four
cameras (Nc = 4) are placed in a 2× 2 array and the room is
a 50[m]× 50[m] square; fixation point candidates thus form a
100 × 100 grid. In the sixteen-camera case, sixteen cameras
are place in a 4× 4 array and the room is a 100[m]× 100[m]
square. The total area coverage at a time, which is the ratio of
the sum of the areas of all FOVs to that of the room, is about
50 % for both cases.

The number of persons is 30 (Np = 30) in the four-camera
case and 120 (Np = 120) in the sixteen-camera case. Each
person basically performs a linear and constant motion but the
velocity and the moving direction change every step according
to a normal distribution with the variances 1.5[m2/s2] and
25[deg2], respectively. When a person touches a wall, he/she
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Fig. 2. Motion uncertainty model of person.

changes the velocity in a regular reflection manner.

III. PREDICTION OF FUTURE STATES

Planning algorithms repeatedly determine the fixation points
of all cameras at the next time step (t = 1) based on the
prediction of states of tracked persons for future T time steps
(t = 1 ∼ T ) (i.e., T -lookahead search).

A. Motion Modeling of Person

We use a linear motion model for predicting positions of
persons. Concerning the uncertainty in prediction, we use a
simple probabilistic model that the positional uncertainty of a
person is isotropic and represented by the so-called 3σ portion
of the normal distribution with variance σ 2

mt, where t is the
time step from the last time at which the person is observed
(see Fig. 2). σ2

m is determined so that the predicted uncertainty
covers the actual uncertainty. We assume that the position
of a person can be predicted if the period of not observing
the person is less than three steps; otherwise, that person’s
positional uncertainty is too large to be used for planning.

B. Predicting the Number of Tracked Persons for a Fixation
Point

The objective of planning is to repeatedly determine fixation
points that can maximize the expected number of tracked
persons for a predetermined time duration. From the motion
uncertainty model of person, we can calculate a set of posi-
tional distributions of the persons currently under considera-
tion at a future time step. On the other hand, for each fixation
point of a camera, its field of view (FOV) is calculated. The
expected number of persons tracked by a camera directed to a
specific fixation point at a time step is thus calculated as the
summation of the probabilities of the persons being within the
corresponding FOV.

This probability is calculated by integrating the person’s
positional distribution within the FOV. Since the FOVs and
the distributions are both circular, we can prepare a look-up
table indexed by the variance of the distribution (which is
equivalently the number of steps during which a person is not
in any FOVs) and the distance between the mean position and
the fixation point.

When FOVs of two or more cameras overlap with each
other, the calculation of the expected number becomes a little



more complex. The probability that a person is within any of
FOVs is calculated as follows:

• If the positional distribution of the person is completely
within the FOV of at least one camera, the probability is
one.

• If the distribution of the person is completely out of all
FOVs, the probability is zero.

• If only a part of the distribution is within some FOVs,
we classify this case into the following three subcases:

– If that part is included only in one FOV, the proba-
bility is calculated by the table look-up.

– If that part is included in multiple FOVs but not in
any intersection of them, the probability is the sum
of the probabilities of being included these FOVs
(i.e., the sum of the results of the table look-up).

– If that part is included in the intersection of some
of the FOVs, we need to integrate the probabilities
inside the union of such FOVs; but this is costly
because the simple table look-up cannot be used.

Although the last subcase should be, in principle, treated
differently from the others, we approximate the probability
for the subcase with the one calculated in the same way as
the other subcases because we examined many data and found
that the frequency that this subcase happens is about 1%.

IV. TRACKING WITH FREQUENTLY CHANGING FIXATION

POINTS

When we visually track many arbitrarily walking persons,
we usually take a strategy of changing the fixation point
frequently from person to person at various positions. Even
if we do not look at a person for a short period of time,
we can estimate (or interpolate) his/her movement from the
intermittent observation data1. This strategy may thus achieve
a high number of tracked persons while keeping a sufficient
accuracy in motion estimation.

A. Evaluation Criterion for Tracking with Intermittent Obser-
vations

We assume that a low-level tracking system is working be-
neath the view planner. Such a system is often developed based
on statistical data integration methods such as Kalman filter [7]
or particle filters [10]. These methods use a probabilistic model
of state evolution. Such a model usually indicates that the
positional uncertainty of a target increases as time elapses if no
observations are available, and that the target will eventually
be lost if it is not observed for a long time.

This implies that as long as the time period during which a
target is not observed is sufficiently short, the target’s move-
ment can reliably be estimated. In this paper, for simplicity,
we set a threshold and if the non-observation time period for
a target is less than or equal to the threshold, the target is
considered being tracked even for that time period. Currently,

1Note that not observations themselves but those for a person are inter-
mittent; that is, cameras obtain observations at every time step but targets of
observation may be different from time to time.
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Fig. 3. Different behaviors for different evaluation criteria.

we use two as the threshold. That is, when a person is
observed at time t1 and t2 (t1 < t2) and not observed at times
{t | t1 < t < t2}, the total number of tracking for the person
given at time t2 is t2−t1 if t2 ≤ t1+3 and one otherwise. We
use this way of counting for calculating the expected number
of tracked persons (see Sec. III-B).

The expected number is used as the primary criterion. Fig.
3 shows an illustrative example of the behavior of cameras
based on this criterion. There are two groups of persons on
the upper and the lower side of the space, respectively, and the
camera cannot capture both groups at times t = 1, 2. When we
maximize the number of persons within the FOV of the camera
(in the case where the persons should be continuously tracked
for motion estimation), the camera moves like Fig. 3(a) and
the total number of the tracked person is eleven. On the other
hand, if we use the evaluation criterion explained above, the
camera will move like Fig. 3(b) and the total number of the
tracked persons now becomes twelve because we count two
persons out of FOV at time t = 1; the camera tends to move
to the persons that have been out of FOVs for a while.

Since several fixation points may have the same expected
number, we use two more criteria for evaluation.

• The amount of movements of camera. Smaller values are
better. This is for evaluating the smoothness of camera
movements.

• The distance of the fixation point of a camera from
its home position. Smaller values are better. This is for
evaluating the distribution of camera fixation points. If
persons are distributed widely in the room, then this
criterion will be more important. In addition, more highly



(a) persons (red squares) and the
     map of expected number of tracked.

(b) a range of fixation points
     at a time step.

(c) representative points
     for uniformly-divided regions.

(d) selected promising candidate
      points (indicated by blue).

Fig. 4. Generating a map of promising fixation points at a time step.

distributed fixation points are better for (fortunately)
capturing currently-untracked persons.

These criteria used in the following order: the expected number
of tracked persons, the amount of camera movements, and the
distance from the home position. If two or more solutions
are equivalent in terms of a preceding criterion, the next one
is used for ordering the solutions. Ties under all criteria are
broken randomly.

V. MULTI-START LOCAL SEARCH-BASED PLANNING

A. Multi-Start Local Search

The planning problem treated in this paper has a very large
search space due to a combination of various fixation points
of cameras and multi-step lookahead. Multi-start local search
(MLS) is a commonly-used algorithm for solving such large-
scale combinatorial problems [15]. In MLS, local search (LS)
is repeated from a number of initial solutions and the best
solution found during the entire search is output.

We previously compared an MLS-based method with an
exhaustive search-based one and learned that the the former
exhibits a comparable performance to the latter with a much
less computation time [12]. MLS is thus suitable for the basic
strategy for our problem.

An MLS algorithm is characterized by the following: search
space, neighborhood, local search strategy, and initial solution
generation. We explain these in the following subsections.

B. Search Space, Neighborhood, and Local Search Strategy

In tracking with intermittent observations, fixation positions
cannot be evaluated at one time but should be evaluated as a
sequence of them. We therefore define the search space as
all combinations of reachable fixation points of the cameras
during the whole time period under consideration.

We define the neighborhood of a solution (a point in the
search space) as the set of solutions in which the fixation
point of only one camera at only one time is different from the
solution by one step in the grid representation of 2D position
(so-called 8 neighbors). Letting T be the depth of lookahead,
the number of neighboring solutions is thus 8N cT .

We use the best admissible move strategy as the local search
strategy.

t = 0

t = 1

t = ts = T

t = ts

t = T

t = 0

t = 1

(a) candidate position at time T
     is selected.

(b) candidate position at time ts < T
      is selected.

initial position
candidate position
interpolated position

initial solution

Fig. 5. Generate initial solutions.

C. Generating Initial Solutions

The search space of our MLS-based algorithm is consid-
erably large and usually requires a large number of initial
solutions to get satisfactory results, thus increasing the compu-
tation time. To keep the necessary number of initial solutions
low, we take an approach of explicitly enumerating promising
fixation points in space-time and using them for generating
good initial solutions.

The steps for generating initial solutions are as follows.
These steps are performed for each camera independently (i.e.,
we do not consider the overlap of FOVs at this stage).

1) Generate maps of the expected number of tracked per-
sons for the time steps under consideration (t = 1 ∼ T ).
Since the fixation points are on grid points, and since all
cameras have the same characteristics, we can make a
2D grid map of the expected number of tracked persons
at each time step applicable to every camera (see Fig.
4(a) for the map for a time step).

2) Divide the maps into a set of uniform-sized regions
(composed of 5 × 5 grid points) within the movable
range of each camera (see Fig. 4(b)) and select one
representative point within each region which has the
maximum expected number (see Fig.4(c)). The expected
number becomes the score of the region.

3) Determine the maximum score and set a threshold for
promising fixation points as the α% of the maximum
(currently, α = 90). The representative points of the
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Fig. 6. Comparison in various problem settings.

regions whose scores are higher than the threshold
become a set of fixation point candidates (see Fig.4(d)).

4) Repeat the following for each camera to select N init

initial solutions. Select one fixation point among the
candidates randomly. Let ts be the time step at which the
fixation point is. If ts = T then the fixation points at
t = 1 ∼ T − 1 are determined by the interpolation.
Fig. 5(a) shows such a case. The horizontal lines in
the figure represent a side view of 2D maps. If ts <
T , then the fixation points at t = 1 ∼ ts − 1 are
determined by the interpolation, and those at t > ts

are determined recursively (select one candidate point
at t > ts randomly and so on) (see Fig. 5(b)).

5) Merge Ninit sets of initial solutions for all cameras.

D. Planning Algorithm

The planning algorithm performs MLS using the initial
solutions mentioned above. We examined the performance of
planning for several Ninit’s and decided to use Ninit = 15.
Once the set of fixation point candidates is generated (steps 1
to 3 in the above), the rest of the initial solution generation and
the local search are completely parallelizable. We thus use a
PC cluster system with 15 CPU’s to speed up the planning. The
average computation time for one time step is about 0.3 [sec]
in the four-camera case.

E. Experimental Results

This section describes experimental results using 10 sets
of simulation data in the four-camera case, each of which is
composed of 100 step movements of 30 persons. We evaluate
the methods in terms of tracking ratio, which is the averaged
number of tracked persons per time step divided by the total
number of persons. Since MLS is a randomized method, for
each data set, we ran the method 10 times and calculated the
average of the resulting tracking ratios.

1) Comparison with Other Methods: We here compare the
following five methods:

• Proposed method (called intermittent).
• Another MLS-based method which does not consider

intermittent tracking (called continuous).
• Select fixation point of each camera independently (called

independent).

TABLE I

COMPARISON OF FIVE METHODS.

intermittent continuous independent random fixed

74.2% 70.8% 69.6% 48.8% 46.9%

• Select fixation points randomly (called random).
• Fixed cameras (called fixed).

Table I compiles the results. Note that the evaluation criterion
which allows intermittent tracking (see Sec. IV-A) is used
for evaluating all methods. The table shows that random and
fixed produce much worse results. Among the other three,
intermittent exhibits the best performance.

2) Comparison in Various Problem Settings: We then com-
pare the three methods (intermittent, continuous, independent)
in various problem settings. In general, the difference in
performance between planning methods is smaller in easier
problems. As the problem becomes harder, however, only good
methods are expected to exhibit a satisfactory performance. We
therefore change several parameters determining the hardness
of the problem to examine if there exists such a tendency.

Fig. 6(a)-(c) show the comparison results for changing the
maximum velocity of the camera fixation point, the radius of
the field of view, and the number of persons, respectively. In
all cases, the intermittent method outperforms the others and
its performance degradation according to the problem being
harder is smaller. These results show the effectiveness of the
proposed intermittent method.

VI. GROUPING OF CAMERAS FOR REDUCING THE

PLANNING COST

The planning method that determines fixation points si-
multaneously has a larger search space than the one that
determines a fixation point for each camera independently, and
is thus more costly. To reduce the planning cost, we divide
the cameras into mutually independent groups and determine
fixation points within each group.

A. Dividing the Cameras into Mutually Independent Groups

We divide the cameras into mutually independent groups
based on the relations between their fixation points and on the
distribution of tracked persons. A group of cameras can be
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Fig. 7. Example groupings of cameras.

planned independently with the others if the cameras in the
group do not track the persons that are tracked by the others
for the period of time under consideration.

When a person can be tracked at one time by a time horizon
Tthre (≤ T ) by a pair of cameras, namely, when there is a
possibility of a person being in the intersection of possible
FOVs of a pair of cameras at a time step up to Tthre, the pair
of cameras are considered dependent. The possible FOV of a
camera at a time is the union of the FOVs calculated from
the set of fixation points that can be reached by that time.
We then make groups of cameras based on the dependent
relationship; a set of cameras which are connected by the
dependent relationship forms one group.

Fig. 7 shows example groupings of the cameras for sev-
eral time horizons. Small squares and lines indicate fixation
points and dependent relationships, respectively. A longer time
horizon produces a smaller number of independent groups.
Fig. 8 shows the tracking ratio and the computation speed
(the number of planned steps per second) for various T thre’s.
From the figure, Tthre = 2 or 3 seems to provide a reasonable
performance with an allowable cost.

B. Planning Algorithm

The new planning algorithm with the camera grouping per-
forms the MLS using the initial solution generation described
in Sec. V. We sort the groups in the descending order of
their numbers of cameras, and prioritize them in this order. In
planning of the group with a priority, we consider the overlaps
with the FOVs of all cameras within the groups with higher
priorities.

TABLE II

TRACKING RATIO

(a) (b) (c)
Four-camera case 74.2 % 75.7 % 74.5 %
Sixteen-camera case 73.2 % 71.7 % 70.9 %

TABLE III

ACHIEVEMENT RATIO

(a) / (d) (b) / (d) (c) / (d)
Four-camera case 0.906 0.924 0.910
Sixteen-camera case 0.940 0.920 0.910

TABLE IV

COMPUTATION TIME

(a) (b) (c)
Four-camera case 0.3 s 0.2 s 0.1 s
Sixteen-camera case 48.0 s 10.6 s 1.1 s

C. Experimental Results

We made five sets of simulation data in the sixteen-camera
case, each of which is composed of 100 step movements of 120
persons. Using these data sets and the same data sets as the one
used in the previous comparison (i.e., ten sets of simulation
data in the four-camera case, each of which is composed of
100 step movements of 30 persons), we compare the following
four methods:

(a) Determine fixation points of all cameras simultaneously
(intermittent in Sec. V-E).

(b) Determine fixation points with grouping.
(c) Determine one fixation point after another. This is equiv-

alent to the case where each group has a single camera
in (b).

(d) Determine fixation points of all cameras simultaneously
assuming all persons’ movements are known. This is
used as an upper bound.

Figs. 9(a) and 9(b) show the tracking ratio in the four-
camera and the sixteen-camera case, respectively. Table II
shows the averaged tracking ratios.

We analyze the results considering the following two factors
that affect the tracking performance:

• Interference between cameras. The degree of interference
between cameras goes up as the number of cameras
increases. This interference can be managed to some
extent by simultaneously planning multiple cameras.



• Size of the search space. This also increases as the
number of cameras planned simultaneously increases.
The larger the search space, the more difficult it would
be to find a good solution.

In the four-camera case, the order of the effect of the
interference between cameras is (a) < (b) < (c), because, by
planning multi-cameras simultaneously, the effect is reduced.
On the other hand, the order of the size of the search space
is (a) > (b) > (c). This seems to be the reason why method
(b) is the best.

In the sixteen-camera case, the orders of the two factors are
the same as in the four-camera case. Although the both effects
become larger as the number of cameras increases from four
to sixteen, that of the size of the search space seems smaller
thanks to our effective initial solution generation; the effect
of the interference between cameras is thus dominant. This is
considered to be the reason why method (a) is the best.

The area coverage at a time is, as mentioned above, about
50%. Our planning algorithm is, therefore, considered to
achieve about a 25% increase of the performance. To see
how good this is, we compared the actual results with the
upper bound (method (d)). Table III gives the proportion of the
tracking ratio to the upper bound. This shows the performances
of the methods are quite good.

Table IV gives the computation time; it shows that the
planning cost of method (b) has been considerably reduced
compared to method (a).

As shown in the tables, the performance and the planning
cost are in a trade-off relation. The important point is that
we can manage the trade-off by adjusting the parameter T thre

depending on the problem settings such as the computational
power and the persons’ walking speed.

VII. CONCLUSIONS AND DISCUSSION

This paper has presented methods of view planning for
multi-camera surveillance applications. We have defined a
multi-camera multi-person tracking problem (MCMP prob-
lem), in which the objective of planning is to maximize
the number of tracked persons. We introduced an evaluation
criterion that allows tracking with intermittent observations
thus encouraging frequent changes of fixation points. For
this criterion, we have developed MLS-based method that
searches the space of combinations of fixation points of all
cameras during a lookahead. We also developed a method of
generating initial solutions from a set of promising fixation
points in space-time. This MLS-based method outperforms
other methods, especially when the problem is hard. In order
to reduce the cost while keeping the performance, we then
modified the method such that it divides the cameras into
mutually independent groups and determines fixation points
within each group. We have shown that the modified method
exhibits a comparable performance to the original method with
much less computation time.

Currently, we make several assumptions: no occlusion,
negligible target recognition time, perfect recognition ability.
A future work is to remove these assumptions in order to

consider more realistic situations such as occasional occlusion
and recognition failure. Especially, when we remove the
assumption of perfect recognition ability, we need to model the
performance of recognition, which will decrease as the time
for not observing a target increases. We then need to consider
the tradeoff between increasing recognition performance by
observing each target frequently and increasing the number of
tracked persons by frequently changing fixation points.

Another future work is to apply the current method to the
cases where the above assumptions almost hold. An example
case is the one where cameras are set at high positions and
persons with distinctive colors walk in a simple background.
The proposed method can also be applied to the case where we
analyze very large images from stationary cameras and need
to select a portion of the images to analyze at each frame due
to computation limitation.
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