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Abstract—We describe a method of mobile robot localization based on a rough map using stereo
vision, which uses multiple visual features to detect and segment the buildings in the robot’s field of
view. The rough map is an inaccurate map with large uncertainties in the shapes, dimensions and
locations of objects so that it can be built easily. The robot fuses odometry and vision information
using extended Kalman filters to update the robot pose and the associated uncertainty based on the
recognition of buildings in the map. We use a multi-hypothesis Kalman filter to generate and track
Gaussian pose hypotheses. An experimental result shows the feasibility of our localization method in
an outdoor environment.
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1. INTRODUCTION

This paper presents an approach to determining the pose (position and orientation)
of a mobile robot in an urban area using a set of stereo image pairs. Understanding
the surrounding scene and identifying man-made structures are important tasks for
the localization of a mobile robot in outdoor environments. For outdoor robot
localization, many approaches using odometry, beacons or GPS have been proposed
and realized before. Since the pose errors of odometry accumulate without bounds
and cannot be corrected without other external sources, odometry is seldom used
alone; many other approaches are often accompanied with it, such as GPS-based
approaches. While GPS can provide more accurate pose information in open
spaces, GPS signals are susceptible to various forms of interference and can be
quite unreliable in urban areas [1, 2].

Computer vision can provide both accurate localization and robustness against
these environmental influences (see Ref. [3] for a survey). Vision-based approaches
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are attractive because they are self-contained in the sense that they require no
external infrastructures such as beacons or satellites. The knowledge of having
buildings in the environment allows us to exploit their typical characteristics.
Horizontal or vertical principal directions and abundant parallel or orthogonal
relationships between lines and surfaces are valid assumptions in many man-made
environments. The vision system used in this paper attempts to capture these highly
structured configurations in the buildings.

1.1. Our approach

In this paper, we will guide the robot with a rough map which represents an
environment as a set of two-dimensional (2-D) line segments and can thus be built
easily. The map approximates the outlines of buildings except detailed features to
be used as landmarks. We propose a method to robustly estimate the robot pose in
the map using multiple visual features: low-contrast regions, non-vertical borders,
vertical borders and disparity regions. Low-contrast regions include the sidewalls
of buildings and the sky in outdoor scenes. Non-vertical and vertical borders are
detected from the building structures such as windows, doors, corners, roof, etc. The
disparity regions are extracted for matching with the walls of buildings. Multiple
visual features are matched to the given map and the results are integrated into the
odometry for the estimation of robot pose using extended Kalman filters (EKFs).

In most vision-based localization systems, a key issue is often the data association
problem of matching an image taken at arbitrary robot pose relative to a given map.
In order to address this problem, we need to first extract a set of features from the
sensor readings and identify the corresponding features in the given map usually by
some form of constrained search. Once such a correspondence is established, the
robot pose can be estimated with reduced uncertainty. There are, however, various
errors, such as the noisy sensors and the features found in the image, as well as some
uncertainties of roughness on the map in our case. Since they introduce uncertainty
in both the landmark pose and the estimation of the robot pose, the association
problem is not so easy. The problem is further complicated by unreliable feature
extraction and low feature discriminance likely to produce false matches.

These problems motivate the development of a method that can make delayed
decision, i.e., a multi-hypothesis approach. The approach allows maintaining when
and where to place pose hypotheses, as much as necessary and as few as possible.
This property is provided by using a constraint-based search in an interpretation
tree. This tree is spanned by all possible local-to-global data associations, given a
local map of observed features and a global map of model features [4, 5].

In our work, we explore a localization problem using a rough map in real outdoor
environments. To solve this localization problem, we use a novel combination
of an efficient map-matching scheme and a multi-hypothesis technique based on
multiple visual features. For efficient map matching, we use the ordering and
the priority constraints of multiple visual features extracted robustly using stereo
and low-contrast region. In addition, hypothesis generation is combined with the
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EKF framework to perform the multi-hypothesis localization, followed by heuristic
hypothesis management techniques. As far as we know, there are no works that
previously explored this kind of localization problem.

1.2. Related work

The problem of vision-based pose estimation has been studied before. Optical
flow and feature tracking have both been used for ego-motion estimation, but
unavoidably exhibited drift [6]. Yagi et al. estimated the azimuth of edges extracted
from a conic image sensor to refine robot odometry estimates [7].

Recent research in vision-based localization in urban environments focuses on the
recognition and matching of building facades. Georgiev and Allen [8] have used
vision-based techniques to supplement GPS and odometry. Their system requires
detailed geometric models and they have only localized views in the vicinity of
only a single building. Johansson and Cipolla [9] determined the relative pose of a
camera by computing the transformation required to match a rectified view of the
facade from a single image. Reitmayr and Drummond [10] presented a model-based
hybrid tracking system for outdoor augmented reality. The system employs a three-
dimensional (3-D) model capturing the overall shape of buildings as large planar
surfaces with highly detailed textures. In these systems, creating such detailed
models for large outdoor environments becomes a troublesome task.

In addition, since the moving range of outdoor mobile robots is usually much
wider and more complicated than that of indoor ones, a promising approach is
thus the two-phase method [11, 12]. In the learning phase, the robot first selects
natural features of points, lines or regions from observed images and registers them
as landmarks on the map. In the execution phase, the robot pose is estimated
by matching the observed features to the map. The navigation, however, may be
unstable when the robot’s viewpoints and the illumination conditions are changed
from the learning phase, specifically in the view-based approach. It also needs much
time and effort to guide the robot in outdoor environments for extensive training, and
requires closely following previously traversed paths.

Since it is hard to build the exact map of outdoor environments, using inaccurate
maps is another easy method of giving the environmental information to the robot.
Inaccurate maps may include hand-drawn or topological–geometrical maps, where
the relative poses among object models can be uncertain. A hand-drawn map is
an interface for sketch-based navigation [13] and a topological–geometrical map is
a hybrid map for navigation in large-scale environments [14]. A hand-drawn map
is, however, hard to use for navigation tasks, because it has no metric information.
For a topological–geometrical map, it is costly to build and update the metric local
models for object recognition in outdoor environments.
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1.3. Paper outline

The rest of this paper is organized as follows. Section 2 shows how to extract the
multiple visual features from a pair of stereo images. Section 3 presents a method
for representing the rough map. In Section 4, we describe matching processes
of the multiple visual features extracted in Section 2. In Section 5, we depict
localization algorithms using EKF for combining the matching results. Next, multi-
hypothesis localization is represented in Section 6 using the multi-feature EKF-
based localization method depicted in Section 5. Then, we present an experiment
conducted in an outdoor environment of our university campus in Section 7. From
the experimental result, we show the feasibility of the proposed method. Finally, in
Section 8, we conclude this study and address some future works.

2. FEATURE DETECTION

In this paper, we shall consider self-localization by means of only vision and
odometry. We are interested in navigation around urban environments such as our
university campus. Since views of trees, cars and bicycles, however, differ from
time to time, we use multiple visual features observed from buildings by using
stereo vision with an angle of elevation of more than 10◦. Their multiple visual
features are relatively large and static as landmarks to be used for localization as
follows: low-contrast regions for identifying non-vertical and vertical borders, non-
vertical borders for the vanishing points to calculate the wall directions of buildings,
vertical borders corresponding to the corners of buildings and disparity regions for
matching with the walls of buildings.

2.1. Low-contrast regions

Many real-world scenes contain regions of low contrast. Typical regions include
the sidewalls of buildings and the sky in outdoor scenes. Such low-contrast regions
are very hard to estimate in terms of intensity-based depth because they lack any
distinctive texture. We can, however, exploit the existence of low-contrast regions
instead of their limited texture for detecting multiple visual features. In this case,
the multiple visual features should line up in the intermediate regions of different
low-contrast regions. The low-contrast region processing involves segmenting each
image into no overlapping regions based on intensity [15]. A simple linking
algorithm starts at every pixel in the image and recursively grows out regions of
similar intensity. An input image at the first frame and its result of low-contrast
region processing are shown in Fig. 1.

We recognize the sky regions (the top region shown in Fig. 1b) using an algorithm
developed in our laboratory from the extracted low-contrast regions; from a priori
knowledge of position, color and shape of the sky in the image, we define the
following conditions that a region is recognized as the sky:
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Figure 1. An input image (a) and its low-contrast regions (b).

• It touches the top boundary of an image.

• Its average intensity is larger than a certain threshold.

• Its size is larger than a certain threshold.

• The width of its upper part is larger than that of its lower part.

2.2. Border features

We extract couples of non-vertical and vertical line segments fitted to the edge
pixels, and attain coupled borders from the line segments near enough to each
other both in the image and the disparity space. When identifying the borders, we
consider the height of their end-points above ground using a segment-based stereo
algorithm [16]. A non-vertical border can be coupled with up to two vertical borders
which may be on its left and right sides, respectively. A vertical border can also be
coupled with up to two non-vertical borders which may be on its left and right sides,
respectively. Each end of a non-vertical border should be coupled with the upside
end of its coupled vertical border. Isolated borders are then detected when they are
adjoining to the sky regions recognized above.

2.2.1. Non-vertical borders. Non-vertical borders can be extracted from the
building structures, and can provide the relative orientation between the robot and
the building. What is necessary for estimating the relative orientation in this case
is a vanishing point (VP). The VPs of non-vertical borders exist on the horizon in
the image. We can then estimate the angles between the image plane and the lines
from the camera center to VPs (VP1 or VP2 in Fig. 2). The lines are parallel to
the respective directions of visible walls with respect to Xw, x-axis of the world
reference coordinate system.

From Fig. 2, we can deduce that there exists the following relation among the
robot’s orientation, θp with a range of [−π, π], the inward direction of a wall,
θb with a range of [−π, π], and the angle from a vanishing point, θvp with a range
of [−π/2, π/2]:

θp − θb + θvp = 0. (1)
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Figure 2. Estimation of a robot orientation from VPs.

2.2.2. Vertical borders. Vertical borders correspond to the corners of buildings.
Coupled vertical borders are detected as couples with non-vertical borders described
in the previous section. Isolated vertical borders are detected also considering their
heights when they are adjoining to the sky regions. Figure 3a shows the detection
results of non-vertical and vertical borders in the right image at the first stereo
frame. The selected borders must be in the intermediate regions of different low-
contrast regions as shown in Fig. 3b because there are many tall trees and streetlights
resulting in similar features to the borders of building in outdoor environments. The
black regions are not low-contrast regions.

2.3. Disparity regions

We use area-based stereo matching in order to extract a disparity image [16]. The
depth is less sensitive to changes of illumination than the previous visual features
provided by using a single-intensity image [17]. In this study, disparity regions are
detected as connected regions with a disparity in the disparity image.

One of the advantages of stereo vision is that it provides a more informative 2-D
depth map. With a priori knowledge about the minimum height of buildings in
an urban environment, we can extract the regions of buildings from the disparity
regions using the height calculated from the disparity image. The histograms
of gradient orientations of edge pixels in the regions weighted by their gradient
magnitudes seem to be well-suited for discrimination between urban structures and
natural environments. Intuitively, the histograms for the building regions tend
to be unimodal or bimodal and most of whose peaks tend to be separated by
approximately right angles to each other [11, 18]. However, the histograms at the
tree regions, for example, tend to be more uniformly distributed and the peak values
have lower maximum values than those of the building regions. The textured boxes
in Fig. 4a show the resultant building regions detected from the right image of a
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Figure 3. Detected borders (a) and their relationships to the low-contrast regions (b).

Figure 4. Detected building regions (a) and all multiple visual features (b).

pair of input stereo images shown in Fig. 1. The result of all multiple visual features
detected so far is shown in Fig. 4b, where the rectangles represent the recognized
building regions.

3. ROUGH MAP

Much of the research efforts in robot navigation have been directed towards object
representation on the map and object recognition using the map. Although an
accurate map provides accurate and efficient localization, it needs a lot of cost to
build and update [8, 14]. A solution to this problem would be to allow a map
to be defined roughly since a rough map is much easier to build [13]. A rough
map in this paper consists of two parts—one is the objects for buildings and the
other is the paths for the roads among them. The rough map is defined as a 2-D
segment-based map that contains rough metric information about the poses and
dimensions of buildings themselves, and also their relative distances and directions
in the environment. We assume that the buildings have planar walls, and that these
planes have both horizontal and vertical edges. This is often the case for buildings
as they have windows and doors. We also assume a flat polygon on the top of
a building as a roof since roof details on a tall building cannot be seen from the
ground level.
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(a) (b)

Figure 5. A guide map of our university campus (a) and an example of rough map (b).

The map may include the robot’s current pose as an initial pose and the robot’s
goal pose on the map. The approximate outlines of buildings are represented in the
map and thus used for recognizing the buildings present in an environment during
the navigation. We can also arrange a path of a robot on the map. Figure 5 shows
a guide map for visitors to our university campus and an example of a rough map
built from the map. A human can use this kind of map to navigate efficiently, but it
is difficult for the robot to use it, because of the deficiency of accurate metric and
geometric information.

The characteristics of the rough map can be summarized as follows. The exact
model of map uncertainty is unknown. The uncertainty may be not uniform across
the map. The geometric details such as exact outlines, exact dimensions and exact
poses of buildings are not available. The map also lacks information about exact
models of the building structures.

Relative poses between landmarks in a rough map are allowed to be uncertain.
The uncertainty of a rough map might cause the robot pose to be inconsistent if it is
represented in the global coordinate system of reference. To address this problem,
we represent the robot pose in a local coordinate system attached to a landmark
which the robot has recognized recently. When the robot finds a new landmark, the
robot changes the local coordinate system from the old landmark to the new one
with coordinate transformation of its pose based on the relative pose between the
old and new landmarks. We refer to the landmark as a local origin. As the robot
moves, it changes the local origin. More specifically, we define the robot pose as
a pair of a local origin and the pose in a local coordinate system attached to the
local origin. Landmarks in the building with the local origin would have smaller
positional uncertainty in the local coordinate system than in the global one, thereby
becoming easier to recognize.

To handle the uncertainty, the relative pose between two local coordinate systems
is defined using a Gaussian random variable. Let djk = (xjk, yjk, θjk)

T be
the relative pose of local coordinate system Lk with respect to local coordinate
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Figure 6. A relationship among global (G), building (B), local (L) and robot (R) coordinate systems.

system Lj . djk is a random variable having a Gaussian distribution. Thus, the
coordinate transformation of robot pose XR = (x, y, θ)T from local coordinate
system Lj to Lk can be calculated as follows:

XRk = T−1(θjk)(XRj − djk), (2)

T(θjk) =
[ cos(θjk) − sin(θjk) 0

sin(θjk) cos(θjk) 0
0 0 1

]
, (3)

where XRj and XRk are the robot poses with respect to the local coordinate systems
Lj and Lk, respectively, as shown in Fig. 6.

Figure 6 shows representative transformations among global (XG–YG), building
(XB–YB), local (XL–YL) and robot (XR–YR) coordinate systems. A building
coordinate system has its origin at the center of a building and parallel to the
principal directions of a building. A local coordinate system is selected such that
its origin is at a visible and nearest corner of a certain building from the robot. The
local coordinate system is also parallel to the building coordinate system or one of
its axes placed on the visible and nearest wall of the building. The uncertainty of the
local coordinate system is calculated from the uncertainty of the building coordinate
system with respect to the global coordinate system.

We approximate the buildings present in an environment to polygonal objects on
the map, and compute the uncertainties of their poses and dimensions for estimating
the robot pose. Figure 7 shows examples of modeling the uncertainties of a rough
map in the global and local coordinate systems, where the buildings are drawn with
their mean poses and mean dimensions. The global map uncertainty is roughly
assumed with respect to the world origin of the map, and transformed to the local
uncertainty model with respect to its local origin by a coordinate transformation
using (2) and (3). The local map has greater uncertainty than the global map except
the walls and the corners on the axes of the local coordinate system. The coordinates
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(a) (b)

Figure 7. The uncertainty model of the global map (a) and a local map at the first frame (b).

of (0, 0) on both maps are their respective origins and the local origin has no error.
Assuming Gaussian error models, the ellipses in each map mark 3σ uncertainty
regions of the centers and corners of buildings by their relative pose errors with
respect to the respective origin.

4. MAP MATCHING

One of the most important and challenging aspects of map-based localization is map
matching. In the matching process, we use the depth information: a segment-based
stereo algorithm for the borders and an area-based one for extracting the disparity
regions corresponding to the walls of buildings. The multiple visual features should
be used in order to match the sensory data to the environment map reliably.

When visual pose estimation is attempted, an approximate estimate of the pose is
available from the odometry. This estimate is used to search the map for the most
appropriate buildings for visual localization. The buildings within a certain distance
range from the robot are selected by scanning through the given map. Only the
features of buildings that are viewable under the orientation uncertainty of the robot
pose are considered. We also eliminate the features of buildings that are visible at a
too low an angle to produce a stable match with the image.

Given the candidate features of buildings that successfully passed this selection
process, the robot matches the detected features to those candidates with the
Mahalanobis distance criterion using the depth. The resolution of the depth data
is, however, not constant; the further from the stereo camera, the larger the error of
the depth. In order to simplify the computation, we use the disparity space which
keeps the error constant [19].

At this point, we are ready to match-up the multiple visual features with the map.
Instead of generating and testing all of the data associations using the multiple visual
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features simultaneously, however, we build the data associations according to the
priority of non-vertical borders, vertical borders and disparity regions in this order
(see Section 6). Since the multiple visual features can reduce more effectively the
uncertainty of robot orientation using this priority constraint, we can, thus, narrow
the map candidates for the data association more efficiently. The data association
of non-vertical borders with outlines of buildings is possible when satisfying the
following two criteria:

(i) The Mahalanobis distance dvp between their VPs should be close enough to
each other.

dvp = (xvp − Xvp)(σ
2
xvp

+ σ 2
Xvp

)−1(xvp − Xvp), (4)

where xvp and Xvp are the VPs of a non-vertical border and a building outline,
and σ 2

xvp
and σ 2

Xvp
are their uncertainties, respectively. If dvp is small, two VPs

are considered to be consistent.

(ii) The Mahalanobis distance drt between their parameters in the disparity space
should be small enough, because there are many buildings having parallel walls
in urban environments.

drt = (xrt − Xrt )
T(�xrt

+ �Xrt
)−1(xrt − Xrt ), (5)

where xrt and Xrt are the Hough parameters (r, t) in the disparity space of a
non-vertical border and a building outline, and �xrt

and �Xrt
are their error

covariance matrices, respectively. The judgment of data association depends
on the value of the threshold dthresh for each distance.

The vertical borders are associated with the corners of buildings using the
Mahalanobis distance criterion in the disparity space. The coupled borders are
associated with the coupled features of building outlines and corners. We also
consider the ordering constraint in their associated building.

In the case of disparity data, the disparity regions recognized as building regions
are associated with the walls of buildings using the Mahalanobis distance criterion.
Neighboring disparity data that correspond to a wall are grouped from the result of
data association. By using a plane fitting procedure, then, a plane is used to fit each
group. The results are the plane models as the environment representation. Figure 8
shows the quantized segments (three left segments and a right segment) of four
visible walls of two buildings on the map Fig. 8a and a set of points of the observed
disparity data Fig. 8b in the disparity space (x, y, d) at the first frame. The observed
disparity regions are matched with three visible walls of same building as indicated
by an arrow on the x–d plane of the disparity space. The remaining y-coordinate of
the disparity space corresponds to the upside height of the disparity region, which
was used for recognizing the building regions among the extracted the disparity
regions.

Figure 9 shows a building in the map with visible walls and corners pictured as
thick segments, and black dots and circles, respectively, on the left side. Coupled
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Figure 8. Predicted map data (a) and observed data (b) in the disparity space at the first frame.

Figure 9. Correspondences between a set of multiple visual features and a visible building.

borders, an isolated vertical border and a rectangular disparity region bounding them
are shown on the right side of Fig. 9. A set of arrows of the same style depicts that
coupled borders an isolated vertical border and a disparity region are consistently
matched to the outline, the corners and the wall of same building, respectively.
Considering the coupled borders and their ordering constraints, we can generate
consistent sets of data associations of coupled non-vertical and vertical borders, an
isolated vertical border and a disparity region.

5. MULTI-FEATURE EKF-BASED LOCALIZATION

At this stage, a set of matched features in the image and the buildings in the
map are available, and the task is to estimate the pose of the robot. The map-
matching method described in the previous section provides the data associations
for a correction of the estimated pose of the robot that must be integrated with
odometry. We use the EKFs according to multiple visual features for the estimation
of the robot pose from the results of the map matching.

5.1. Kalman filter framework

A localization cycle in this framework mainly consists of three stages: state and
measurement prediction, observation, and update according to respective multiple
visual features detailed below.
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• Prediction. The state prediction X(k+1|k) and its associated covariance �X(k+1|k)

is determined from odometry based on the previous state X(k|k) and �X(k|k). The
modeled features in the map, M , get transformed into the observation frame.
The measurement prediction z(k+1) = H(X(k+1|k), M), where H is the nonlinear
measurement model. Error propagation is done by a first-order approximation
which requires the Jacobian JX of H with respect to the state prediction X(k+1|k).

• Observation. The parameters of features constitute the vector of observation
Z(k+1). Their associated covariance estimates constitute the observation covari-
ance matrix R(k+1). Successfully matched observations and predictions yield the
innovations:

V(k+1) = Z(k+1) − z(k+1), (6)

and their innovation covariance:

S(k+1) = JX�X(k+1|k)J
T
X + R(k+1). (7)

• Update. Finally, with the filter equations:

W(k+1) = �X(k+1|k)J
T
XS−1

(k+1), (8)

X(k+1|k+1) = X(k+1|k) + W(k+1)V(k+1), (9)

�X(k+1|k+1) = �X(k+1|k) − W(k+1)S(k+1)W
T
(k+1), (10)

the posterior estimates of the robot pose and associated covariance are computed.

5.2. Pose update by the robot motion uncertainty

The state of robot, X = (x, y, θ)T, consists of the 2-D robot position (x, y) which
corresponds to the position of the camera pair, and the orientation of the robot, θ .
Figure 10 shows the motion model of the robot controlled by input U = (l, r)T,
which is the moving distance of the left and the right wheels.

Figure 10. Our four-wheeled mobile robot and its motion model.
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The state transition of the robot is expressed by the following nonlinear equation:

Xt+1 =

 xt + W

2
lt+rt
lt−rt

(
cos θt − cos

(
θt − lt−rt

W

)) + L
(
sin θt − sin

(
θt − lt−rt

W

))
yt + W

2
lt+rt
lt−rt

(
sin θt − sin

(
θt − lt−rt

W

)) − L
(
cos θt − cos

(
θt − lt−rt

W

))
θt − lt−rt

W




= F(Xt, Ut), (11)

where W is the distance between the two rear wheels, and L is the distance between
the robot position and the midpoint of the rear wheels.

Linearizing (11) by the first-order Taylor series expansion around the mean value,
X̂t and Ût , the covariance matrix of the predicted state error �Xt+1 , can be obtained
by:

�Xt+1 = E
[
(Xt+1 − X̂t+1)(Xt+1 − X̂t+1)

T
]

= ∂F

∂Xt

�Xt

∂F T

∂Xt

+ ∂F

∂Ut

�Ut

∂F T

∂Ut

, (12)

where �Ut
is the covariance matrix of the input Ut . We assume that the error �Ut

is
caused only by the slippage of wheels. We also assume that the error of the left and
the right wheels, σ 2

lt
and σ 2

rt
, are Gaussian and independent of each other. Thus, �Ut

is expressed by the following diagonal matrix:

�Ut
=

(
σ 2

lt
0

0 σ 2
rt

)
. (13)

σ 2
lt

and σ 2
rt

are considered to be proportional to the moving distance, lt and rt ; we
determine the proportional coefficients experimentally.

In this paper, we define the uncertainty region as the so-called 3σ ellipsoid
obtained from �Xt

. The positional uncertainty is represented as an ellipse generated
by projecting the ellipsoid on the X–Y plane. The uncertainty of robot orientation
is calculated as the marginal distribution of θ .

5.3. Pose update by the non-vertical border

The VP of a non-vertical border matched with the outline of a building allows a
robot pose to be partially estimated since it provides information about the robot’s
orientation only. From (1) in Section 2.2.1, we can directly observe the robot
orientation using the inward direction of a wall and the angle from a VP. Thus,
the observation is Z = θb − θvp and the prediction z = θp is the robot orientation of
last step. The filter setup for this feature as referred to in (7) and (8) is as follows:

S = [ 0 0 1 ]�X[ 0 0 1 ]T, (7)′

W = �X[ 0 0 1 ]TS−1, (8)′

where �X is the uncertainty covariance matrix of a robot pose X. The robot pose is
generated using these equations by the update stage of the Kalman filter framework
depicted in Section 5.1.
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5.4. Pose update by the vertical border

The corner of a building also allows the robot pose to be partially estimated since
it provides information about the robot’s relative position with respect to the corner
only. After we found the corner of a building corresponding to the vertical border
Z = (x, d)T in the disparity space, the observation equation can be described like
the following equation:

Z = H(X, M) + v

=
(

x

d

)
=

(
f

(mx−xp) sin θp−(my−yp) cos θp

(mx−xp) cos θp+(my−yp) sin θp
f l

(mx−xp) cos θp+(my−yp) sin θp

)
+ v, (14)

where X = (xp, yp, θp)
T is the robot pose, M = (mx, my)

T is the coordinates of the
building corner on the map, f is the focal length of a stereo camera, l is the base
length of the stereo vision system and v is the random observation error. The filter
setup for this feature as referred to in (7) and (8) is as follows:

S = JX�XJ T
X + JM�MJ T

M + �v, (7)′′

W = �XJ T
XS−1, (8)′′

where JX and JM are the respective Jacobians of H with respect to X and M , and
�X, �M and �v are the uncertainty covariance matrices of X, M and v, respectively.
The robot pose is generated using these equations by the update stage of the Kalman
filter framework depicted in Section 5.1.

5.5. Pose update by the disparity region

The disparity regions corresponding to the wall of a building allow the robot’s partial
pose to be estimated since a visible wall of a building gives pose information for the
robot to be a certain distance from the wall and with a certain orientation alongside
the wall. We formulate the wall of a building by y = A + Bx in the map and
that transformed into the disparity space by d = α + βx with z = (α, β)T. The
observation equation Z = (α̂, β̂)T of the disparity region corresponding to the wall
of a building is described as follows:

Z = F(X, L) + v

=
(

α̂

β̂

)
=

(
f l

sin θp−B cos θp

A+Bxp−yp

−l
cos θp+B sin θp

A+Bxp−yp

)
+ v, (15)

where L = (A, B)T is the map parameter and v the random observation error.
The filter setup for this feature as referred to in (7) and (8) is as follows:

S = JX�XJ T
X + JL�LJ T

L + �v, (7)′′′

W = �XJ T
XS−1, (8)′′′
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where JX and JL are the respective Jacobians of F with respect to X and L, and
�X, �L and �v are the uncertainty covariance matrices of X, L and v, respectively.
The robot pose is refined using these equations by the update stage of the Kalman
filter framework depicted in Section 5.1.

6. MULTI-HYPOTHESIS LOCALIZATION

The Kalman filter acts as a pose tracker in this paper. However, a false matching of
the observed features to the model features can lead to an irrecoverable lost situation
if only a single distribution is maintained. Although the most credible estimation at
one time turns out to be totally wrong, a Multiple Hypothesis Localization (MHL)
allows alternative pose estimates to be maintained instead of tracking only the most
credible hypothesis. The MHL has been widely used to solve global localization
problems in which a robot has no knowledge of its initial pose. The global
localization, therefore, has to determine its current pose based on past observations
of the environment [20]. In our work, however, instead of starting with an empty
hypothesis, we start with a highly reliable hypothesis of robot pose. A starting robot
pose around the true pose and its uncertainty of random size must be supplied by an
operator.

This method can be achieved by explicitly tracking multiple pose hypotheses,
via multiple Kalman filters discussed in the previous section, by the priority data
associations of multiple visual features. Direct application of all observations to all
targets association is, however, not practical as the number of possible hypotheses
may be huge with frame steps. This is the reason various heuristics are introduced
to keep the algorithm practicable in the method.

A pose hypothesis is represented by a pose estimate with an associated covariance.
Given a sensor reading, the data associations which have generated the current
recognition are made from the map matching. As previously described, a stereo
camera makes it possible to detect multiple visual features: non-vertical borders,
vertical borders and disparity regions. The pose hypotheses are generated and
updated using the data associations of these features according to the so-called
“measurement-update formula” of (8)–(10). They are driven by the odometric
information according to the so-called “time-update formula” of (11) and (12). The
overall algorithm is summarized in Fig. 11 and the key steps are described below.

6.1. Step 1: hypothesis evolution by robot motion

When the algorithm starts, it takes as input the prior set of pose hypotheses from the
previous cycle. Each of the current hypotheses evolves to take into account the un-
certainty of robot motion according to the odometry. Then, the local origin of each
evolved pose hypothesis is changed when a new one is found. The global map is
transformed to a local map with respect to the new local coordinate system and then
to the disparity space for map matching. When no features are detected from the
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Algorithm MHL {

For each of current hypotheses {
(1) Hypothesis evolution

(2) Hypothesis generation using nonvertical borders
(2)-1 Data association
(2)-2 Pose hypothesis generation using EKF
(2)-3 Hypothesis pruning

(3) Hypothesis generation using vertical borders
(3)-1 Data association
(3)-2 Pose hypothesis generation using EKF
(3)-3 Hypothesis pruning

(4) Hypothesis refinement using disparity regions
(4)-1 Data association and clustering
(4)-2 Pose hypothesis refinement using EKF
(4)-3 Hypothesis pruning

}
(5) Hypothesis merging

}

Figure 11. The overall algorithm. Summary of the MHL procedure.

current input image or no detected features are matched with the map, the evolved
pose hypotheses become the input set of current pose hypotheses in the next cycle.

6.2. Step 2: hypothesis generation by non-vertical borders

Non-vertical borders are first used for hypothesis generation. For each combination
of possible associations between non-vertical borders and building outlines, a new
pose hypothesis is generated using EKF. In this hypothesis generation, the robot
orientation is mainly adjusted.

When each pose hypothesis violates one of the following four constraints, the
hypothesis is considered to be infeasible:

• The pose hypothesis should satisfy the ordering constraint of borders: When
visible borders are on a single building, the relative order of the borders is
maintained from map predictions.

• Matched borders in each data association must be in the predicted field of view.

• Each association should be possible in the sense of Mahalanobis distance check.

• A generated pose must not be largely far away from the evolved pose in the
Mahalanobis distance sense.

Such infeasible pose hypotheses are all pruned.

6.3. Step 3: hypothesis generation by vertical borders

Vertical borders are then used for hypothesis generation. For each pose hypothesis
generated in the previous step, a set of combinations of consistent associations
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between vertical borders and building corners is generated. A new pose hypothesis
is generated for each combination by using EKF. In the case of coupled vertical
borders, only the hypotheses generated using the corresponding non-vertical borders
are considered. The same pruning process is then applied to the generated pose
hypotheses.

6.4. Step 4: hypothesis refinement by disparity regions

For each pose hypothesis generated using non-vertical and/or vertical borders, the
disparity data are clustered and matched with the map of the hypothesis (see Fig. 8).
The pose hypothesis is then refined using the matching and EKF. The same pruning
process is again applied to the refined pose hypotheses.

6.5. Step 5: hypothesis merging

If multiple pose hypotheses have the same local coordinate system and are within a
specified range of each other in the Mahalanobis distance sense, they are grouped
and merged into a new pose hypothesis. Since the hypotheses in a group are
considered to be equally plausible, the pose estimate of the resulting merged
hypothesis is the mean of their poses and its estimated covariance is determined
to cover all their uncertainty regions. All pose hypotheses after this step constitute
the input set of current pose hypotheses in the next cycle.

7. EXPERIMENTAL RESULTS

To study the performance of the localization algorithms described in this paper, we
performed a test in an actual outdoor environment of our university campus. In this
test, the robot makes a number of moves and ends up near its start position.

Our implementation uses the multiple visual features and the state prediction is
made by using only odometry data. The system was tested on about 200 × 200 m2

site with nine buildings on variable outlines (refer to Fig. 5). In the test, a sequence
of stereo images was obtained by driving the robot using the joystick interface to
the steering control system all along the path and back to the starting position.
The visual localization routine proposed in this paper was then performed. It used
the accumulated error from odometry as an initial guess to determine the visible
buildings on the given map and chose their multiple visual features observed for
localization. Figure 12 shows a robot path and sampled images of 30 frames
counterclockwise used for our experiment, where the numbers in circles indicates
the numbers of the frame steps.

Figure 13 shows the results of multi-hypothesis localization on the magnified local
map using the multiple visual features at the start position in Fig. 12. The ellipses in
Fig. 12 are the estimated 3σ uncertainty regions of the robot positions by matching
the respective visual features to the map. A corner of a building linked to the centers
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Figure 12. A robot path and sampled images used for an experiment.

of ellipses means the origin in the local map of the pose hypotheses. Multiple pose
hypotheses are merged in order to keep the number of hypotheses low.

At the first frame (start position), the robot has a rough knowledge on its pose and
observes six non-vertical borders, five vertical borders and eight disparity regions
(refer to Fig. 4b). This yields 20, 14 and 13 pose hypotheses for each visual
feature, respectively (shown in Fig. 13a–c); only position information from the pose
hypotheses is displayed. Figure 13a shows a 3σ uncertainty ellipse of superposed
20 pose hypotheses using non-vertical borders. The reason for the superposition is
because we assumed no correlation between the position and orientation of the robot
at the start position. The VP of a non-vertical border provides information about the
robot’s orientation only. Thirteen pose hypotheses generated using disparity data in
Fig. 13c are merged to four hypotheses in Fig. 13d by the constraint of the same
local coordinate system and the threshold of Mahalanobis distance. The large circle
drawn in Fig. 13d denotes the uncertainty region of an initial robot position with
respect to a local coordinate system. The uncertainty circle consists of the global
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(a) (b)

(c) (d)

Figure 13. Multiple pose hypotheses set at the first frame step using non-vertical borders (a), vertical
borders (b), disparity regions (c) and resulting merged hypotheses (d) of (c).

uncertainty of an initial robot pose and the global uncertainty of a local origin by a
coordinate transformation using (2) and (3) in Section 3.

During this test run of 30 frame steps, the sensor data were recorded by the
robot stopping at regular intervals to take a pair of stereo images. The average
relative displacement between the observations of each frame was less than 10 m
and 20◦ for translation, and less than 90◦ for rotation. The algorithm always
succeeded in generating and tracking the pose hypotheses around the true poses
of the robot. The error ellipses in Fig. 14a denote the unmagnified 3σ uncertainty
levels of the robot positions in the local coordinate system displayed on the global
map. The linked tracks of the ellipse centers between current and descendent pose
hypotheses of Fig. 14a are shown in Fig. 14b with line segments of the same style
for separating different frame steps. The terminated line segments in represent the
pruned hypotheses.

The robot stays localized in the presence of errors and sensing ambiguities where
single tracking of a pose hypothesis would fail. This is a dramatic increase
in robustness which is made possible with a small computational cost of pose
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(a) (b)

Figure 14. The results of multi-hypothesis localization on the test run.

Figure 15. Number of validated pose hypotheses and respective features.

hypotheses as shown in Fig. 15. At each frame step, the average processing time of
all hypotheses was lower than 5% of the total execution time including the visual
processing. The minimum number of pose hypotheses at each step was usually
larger than 1000 when the hypothesis management strategies of validating, pruning
and merging were not applied.

The number of pose hypotheses generally increases as the number of observed
features increases. Considering the large number of features around step 17, the
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(a) (b)

Figure 16. Comparison of a longest track and an odometry-alone result of localization (a) and norm
of uncertainty covariance along the track (b).

small number of pose hypotheses at the step is, however, thought mainly due to
that completely new buildings were obtained in the map when turning left into the
byroad, and most of the observed features were extracted from and matched to the
same building. The high number of pose hypotheses for the low number of features
around step 26 is thought as being due to the place where many buildings exist.

Figure 16a shows the dead-reckoning estimates and a trajectory estimated by the
MHL approach on the global map which is drawn with the mean poses and mean
dimensions of the buildings. The total path length is about 250 m and the image
sequence consists of 30 frames. The dead-reckoning path is completely wrong after
a short frame interval. The longest track of the tracks displayed in Fig. 14b is also
plotted with its 3σ uncertainty ellipses at each step. It is backtracked from the
end position nearest to the start position to demonstrate the feasibility and good
performance of the proposed MHL approach in this paper. Figure 16b reports the
change of the norm of position covariance along the track. When no matchable
features are in view, the uncertainty of the robot position becomes greater. The
uncertainty of the robot position decreases whenever matchable features are in the
field of view.

8. CONCLUSION AND FUTURE WORK

This paper presents an approach to determining the robot pose in an urban area
where GPS cannot work since the satellite signals are often blocked by the buildings.
We tested the method with real data and the obtained results show that the method
is potentially applicable even in the presence of errors in feature detection of the
visual features and incomplete model description of the rough map.
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To make use of the rough map, which is an incomplete description of the environ-
ment, we deploy a technique based on multi-hypothesis tracking in localization. The
main disadvantage of the multiple hypothesis approach is, however, the very large
number of hypotheses that may be generated, although the hypothesis management
techniques of validating, pruning and merging appear to constrain the hypothesis
trees to manageable sizes.

This method is a part of our ongoing research aiming at autonomous outdoor
navigation of a mobile robot to follow a planned path to a user-chosen location on
the rough map. Thus, we want to address the integration of our system with an
autonomous navigation module in the near future.
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