
  

  

Abstract— This paper discusses a sketch interface that can be 
used to guide a mobile robot along a specified path in its 
unfamiliar place. With the sketch interface, the user draws a 
rough map to give navigation tasks to robots. Because sketched 
maps often suffer from various inaccuracies and large errors in 
landmarks, we discuss what kinds of uncertainties in the rough 
maps would mainly have effects on navigating a robot. The 
effects of such inaccuracies on robot navigation are analyzed in 
simulated environments. A quantitative navigability measure of 
rough maps is then developed based on the analysis. 
Experimental results are also presented for validating the 
navigability measure. 

I. INTRODUCTION 
Being able to communicate with robots in the same way we 

interact with people has long been a goal of AI and robotics. 
The underlying goal of this work is the creation of a robot 
interface that allows a novice user to guide a robot to perform 
some navigation tasks. As one strategy for addressing this 
goal, we have been investigating the use of rough maps. The 
user sketches an approximate map of the robot’s environment 
and then draws the desired robot trajectory on the map with 
respect to that environment. 

A Rough map has been investigated previously in our work 
[1]. In the work, we have developed a localization method 
using a rough map which alleviates considerable efforts for 
creating and maintaining the map. We have been able to gain 
some insights into what deserves to be cardinal uncertainties 
of the map from the characteristics of the rough map used for 
the robot navigation: lack of information, inexact geometric 
details, and nonuniform uncertainty model. In this paper, 
hence, we take existence, dimension, position, and shape 
uncertainties of landmarks as key uncertainties in rough maps. 
They were also demonstrated as three strong criteria for a 
good map in [11]: A good map must, first of all, help users 
position themselves in an environment (dimension and 
position uncertainties); next, it must contain an adequate 
amount of information (existence uncertainty); and finally, 
the structures drawn on the map should be recognizable 
(shape uncertainty). 

Robot navigation in this work is modeled as a procedural 
task (i.e., a sequence of steps) to mimic human navigation 
process. Since navigation failures cause a robot to stray from 
its intended route, a robot reaching a desired destination by 
following a specified path is a good indication of the 
navigation success using the rough maps. We carry out 
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experiments to evaluate rough maps with the key 
uncertainties using our previous localization method for robot 
navigation in large-scale outdoor space. In the experiments, 
we judge the navigation succeeded if the robot arrives at the 
destination along the predefined trajectory. We define 
“navigability” as success rate that the robot can reach the 
destination. From the experimental results, we derive a 
quantitative navigability measure for evaluating a rough map 
from its degree of key uncertainties. 

We are also interested in the applicability of the 
navigability measure to rough maps, since we are 
investigating the use of such maps for robot navigation. 
Rough maps are generally incomplete, distorted and 
schematic, and they tend to mix metrics. As a result, scoring 
for the purpose of assessment on rough maps is a challenge. 
We therefore conduct a survey that collects a set of sketched 
maps and assesses the navigability measure by comparing the 
measure directly applied to the maps with their subjective 
evaluation. Furthermore, we validate the navigability 
measure by comparing computed values of the measure with 
navigability outputs both from simultaneous simulations of 
the four key uncertainties. 

II. RELATED WORK 

A. Human Navigation 
Earlier works indicated the importance of environment 

landmarks and their spatial relationships in human navigation 
[2, 3]. The works suggested that spatial relationships of 
landmarks with respect to the desired path may be useful not 
only for robot navigation but also as an interface between a 
robot and its user. 

Humans navigate in the world using dead reckoning, 
memories of learned landmarks and their spatial relations. 
Particularly, the usage of landmarks is vitally important in 
human navigation. The studies based on the vision for action 
and perception paradigm show that humans use landmarks 
with two purposes: positioning and servoing [8]. 

Michon and Denis [9] provide insights into how landmarks 
are used for human navigation and what are considered to be 
key points on the route. In studying the route points, they 
found that the landmarks were used more frequently at four 
types of critical points: (1) the starting position, (2) the 
destination position, (3) the turning points, and (4) the major 
intersections. People thus use the relative positions of 
landmarks as cues to keep on track and to determine when to 
turn left or right. To incorporate knowledge of human 
navigation and the qualitative nature of the spatial 
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Fig. 2. An environmental map (rectangles: landmarks of buildings; 
solid rectangles: landmarks along the path; a solid circle: a starting 
position; a solid square: a destination position; solid triangles: 
crossroads at subgoals; dashed arrows: a robot path). 

information, we expect the rough map to produce what people 
would consider as important. 

B. Sketched Map 
A sketched map is drawn to help people navigate along a 

path for the purpose of reaching a destination. A guide map 
for visitors to our university campus can be considered as a 
kind of rough map (see Fig. 1 (b)). An example is shown in 
Fig. 1 (c) sketched from the actual environment of our 
campus in Fig. 1 (a). Fig. 1 (d) shows the same map after it 
has been arranged so as to be parallel or straight. Although 
rough maps do not generally contain complete information 
about a region, they do provide some relevant information for 
the navigation task. 

People sketch rough maps to include landmarks at key 
points along the path and use spatial relationships to help 
depict the trajectory. Tversky and Lee [2] found that sketched 
maps often simplify, even distort, structural information of 
the environment. This shows that sketches in many domains 
are not presentations of reality, but representations of reality 
[3]. 

A few works which use sketches to direct robot movement 
have been done. In the work of Kawamura et al., the user 
specifies a robot path by selecting via points on a sketch of the 
environment [4]. Artificial landmarks are, however, placed in 
the scene and on the sketch for navigation. In [5], Stuck 
presented a system for detecting navigational mistakes made 
by mobile robots in open environments. It placed more 
emphasis on visual mistakes like misrecognition. The focus 
of this paper was only to detect and diagnose global mistakes 
which lead the robot down incorrect paths. 

The work similar to ours is that of Skubic et al., in which 
they describe the use of sketched maps for directing mobile 
robot navigations [6, 7]. A route is extracted from the 
sketched path in the form of a sequence of landmark states 
with corresponding actions, where each landmark state is a 
qualitative condition based on the spatial relationship of 
landmarks relative to the robot. Their work was adequate for 
simple map configurations but not robust in more complex 
environments. And they did not discuss how the uncertainties 

in the sketched map affect the navigability of a simulated 
robot using the map. 

III. DEFINITION OF A NAVIGABILITY MEASURE THROUGH 
SIMULATED NAVIGATIONS 

We carried out experiments to measure the navigability of 
a mobile robot in more than one hundred simulated 
environments according to the key uncertainties mentioned 
before. This section proposes a quantitative navigability 
measure from the experimental results. 

A. Simulation Implementation 
We use our Multi-Hypothesis Localization (MHL) method 

using a rough map for analyzing the robot behavior in 
simulated environments [10]. The simulation system includes 
a representation of the environment, a vision simulator, and a 
motion simulator. These components are analogous to real 
robot’s sensing and basic navigation capabilities. 

The environmental map is an internal representation of the 
simulated environments where a simulated robot moves. It 
consists of two types of objects: paths and buildings. In the 
simulations, a rough map defined in our previous work is used 
as the environmental map. Fig. 2 shows a simulated 
environment used in one of the simulations, where there are 
several subgoals at turning points, a starting position, and a 
destination. 

The vision simulator simulates a stereo vision consisting of 
two conventional cameras with larger field-of-view than used 
in our previous work. It uses the environmental map to extract 
observed visual features from the simulated robot’s point of 
view. 

The motion simulator simulates the execution of motion 
commands. The simulated robot move away from the starting 
position, turns at the subgoals and stops at the destination 
position in the figure. Since we are using our MHL method, 
the detailed strategy of the simulated motion is as follows: 
When the robot recognized a subgoal or a destination, its pose 
hypothesis would be reserved. When the robot failed to 
recognize a goal, it travels over more distances searching for 
the goal. When the robot has missed or ended up failing to 
locate a goal, its pose hypothesis would be eliminated. The 
survived hypotheses would be merged if allowable. The robot 
goes back to one of the merged pose hypotheses and moves 
on to the target position from its current position without 

 
(a)                                   (b) 

 
(c)                                    (d) 

Fig. 1. Manifold types of maps (a) a view of our campus map, (b) a 
guide map of the campus, (c) a map sketched on paper, (d) an 
adjusted map fitted into the sketch map. 
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(a)                                        (b) 

 
(c)                                         (d) 

Fig. 3. Some navigational results of a simulated robot using a rough 
map with the 50% uncertainty of (a) existence, (b) dimension, (c) 
position and (d) shape in the landmarks of buildings along the path 
shown in Fig. 2. 
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(b) 

 
(c) 

  
(d) 

Fig. 4. Mean navigability data [%] with standard deviation and the 
fitted curve using the simulated rough maps with respect to the key 
uncertainty [%] in of (a) existence, (b) dimension, (c) position, and (d) 
shape in landmarks. 

further observations. When the robot finally has 
misrecognized or not recognized any goal, this leads it to turn 
at the wrong corner or to the wrong direction causing a 
navigation failure on the simulated robot. In the paper, we 
focus mainly on how the uncertainties embedded in rough 
maps affect the navigability of a simulated robot. Hence, the 
simulations described below assume no motion uncertainty of 
the robot for the moment. 

B. Simulation Results and a Navigability Measure 
The simulated rough maps model the sketch inaccuracies 

by the key uncertainties such as existence, scaling or shaping 
of objects with respect to the real environment. In our 
experiment, each of the four key uncertainties has 11 possible 
values from 0 to 100% with 10% interval. Six different paths 
are also ready for the experiment. Accordingly, there will be 
4x11x6 combinations in each building of the simulated 
environments by the values of individual key uncertainty and 
the paths. For each of the combinations, we have executed the 
experiments in more than one hundred simulated 
environments. All the key uncertainties are related to only the 
landmarks along the basic path as shown in Fig. 2. 

The existence uncertainty is the percentage of removed 
landmarks excluding subgoals at turning points. The shape 
uncertainty is the percentage of reshaped landmarks including 
the subgoals. The percentages of dimension and position 
uncertainties were generated relative to the dimensions of 
each landmark including the subgoals. In the simulations of 
50% key uncertainties, for example, 50% of landmarks in the 
cases of existence and shape uncertainties are randomly 
altered. In the cases of dimension and position uncertainties, 0 
to 50% of landmarks are modified at random because these 
uncertainties tend to mix metrics in the sketched maps. 

Fig. 3 presents some navigation results of test runs using 
the simulated rough maps with the key uncertainty of 50%. 
Notice that the test runs in the figure arrive at the same 

destination (the landmark on top right) and take into 
consideration only the landmarks on the path (solid rectangles 
in Fig. 2). The figure shows that the system may handle 
inaccuracies incident to sketching. The ellipses in the figure 
denote the unmagnified 3σ error levels of the robot positions 
on the global or real (for shape uncertainty) map using the 
MHL method remarked before. 

In Fig. 3 (a), we removed several objects to show that the 
simulated rough map does not have to correspond exactly to 
the real environment. It is evident that the sketch does not 
have to include every piece of information about the 
environment, but just the information necessary for the robot 
to stay on track. 

We have also resized and moved objects along the vertical 
and the horizontal axes, and reshaped objects in the 
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(i) Map I                                 (j) Reference Map J 

Fig. 5. Adjusted maps from sketches surveyed by students with a reference 
map for their subjective evaluation, also describing a route of dashed line 
through our university campus (from M4 building to Library). 

environment as shown in Fig. 3 (b), (c) and (d), respectively. 
The robot travels longer distances, but still achieves its 
destination that was sketched. All tests from most of the 
simulations yielded similar results of navigation success. 
However, some of the simulated environments were so 
inaccurate that it was impossible for the robot to find the 
correct its path and arrive at the destination (causing 
navigation failures.) 

Fig. 4 presents the averaged values with standard deviation 
and the functions fitted to navigability data of the robot using 
the rough maps with the key uncertainties. The navigability is 
computed as the likelihood that the robot can reach the 
assigned destination. The probability of navigational success, 
ps, is defined as: 
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We have fitted the following sigmoid function, S(x): 
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into the result of navigability calculations by the key 
uncertainties of dimension, position and shape, respectively, 
because the change of navigability data shows an s-shaped 
curve. More precisely, it has two horizontal asymptotes in our 
case to 0% and 100% of navigability, and the curve makes a 
smooth transition from one to the other with one inflection 
point. 

Surprisingly, the existence uncertainty in rough maps had a 
different effect on the navigability from the other ones (see 
Fig. 4). As mentioned above, the existence uncertainty is the 
percentage of removed landmarks excluding subgoals. 
Assuming no motion uncertainty of the robot for now, we 
think the robot is likely to recognize the subgoals when there 
exist all landmarks or no landmarks between them. The robot 
is, however, liable to misrecognize the subgoals when there 
exist adjacent landmarks on the same side of them. We have 
fitted the following Gaussian-based function, G(x): 
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into the result of navigability calculations by this key 
uncertainty. Table I describes the parameter values of one 

Gaussian-based function and three sigmoid functions that 
fitted for the navigability data under the key uncertainties. 

From the analysis of preliminary simulations by combining 
the key uncertainties, we have found there were weak 
correlations among the effects of key uncertainties on the 
navigability. Consequently, we performed the simulations 
independently according to individual key uncertainties and 
determined the navigability measure N(e, d, p, s) of a rough 
map by a product of fitted navigability functions: 

 
)()()()(),,,( sSpSdSeGspdeN ⋅⋅⋅= ,                 (4) 

 

 
TABLE I 

PARAMETER VALUES OF FITTED NAVIGABILITY FUNCTIONS 

Uncertainty a b c 

Existence 0.250 0.400 0.200 

Dimension 0.996 0.954 -0.147 

Position 1.033 0.499 -0.148 

Shape 2423 -12.31 -1.578 

3461



  

A           B          C           D           E           F    G          H          I           J           

Map

10

9

8

7

6

5

4

3

2

1

Rank

A           B          C           D           E           F    G          H          I           J           

Map

10

9

8

7

6

5

4

3

2

1

Rank

 
Fig. 6. Mean ranks of student’s rating from maps A to J, with standard 
error bars. The rating of 1 indicates the best map, while 10 is the worst 
map. 

 
TABLE II 

RANK VALUES WITH STANDARD DEVIATION OF MAPS 

Map Mean Rank Standard 
deviation Min. Rank Max. Rank 

A 4.71 2.158 1 9 

B 5.86 2.384 2 9 

C 4.61 2.671 1 10 

D 5.93 2.308 2 10 

E 7.18 2.525 2 10 

F 5.43 2.150 2 9 

G 4.79 2.166 2 8 

H 7.04 2.769 2 10 

I 7.00 2.539 2 10 

J 2.57 2.559 1 9 

 
TABLE III 

THE PERCENT VALUES OF KEY UNCERTAINTIES IN THE MAPS 

Map Existence Dimension Position Shape 

A 84 59 28 30 

B 84 80 43 30 

C 50 60 27 40 

D 84 250 134 30 

E 72 93 83 40 

F 58 69 31 40 

G 67 110 44 50 

H 84 154 113 20 

I 72 89 40 40 

J 0 0 0 0 

where e, d, p, and s represent the uncertainty of existence, 
dimension, position, and shape in the map, respectively. The 
reason of the product is because the navigability might be 
aggravated if at least one value of the navigability functions is 
quite low. 

IV. EXPERIMENTS FOR THE VALIDATION OF NAVIGABILITY 
MEASURE 

This section describes the validation experiments for the 
assessment of our navigability measure in two distinct ways. 
First, we compare the ordering of maps on the measure 
directly applied to a set of sketched maps with their subjective 
evaluation by experimental survey. Second, we also compare 
navigability values computed by the measure with those 
produced by the simultaneous simulations, where the four key 
uncertainties are simultaneously considered. 

A. Comparison of Map Orderings by the Survey and the 
Measure 
The first experiment of survey for validation has two stages. 

In the first stage, the students in our building (M4 in Fig. 5) 
were asked to sketch a map showing the environment and the 
route to the library on paper. Route sketches are composed of 
the sequence of a starting position, progressions, turnings and 
a destination position. We did not ask that the sketches be 
drawn to an accurate scale and did not expect that they would 
be. The 9 sketched maps after adjusted for analysis are shown 
in Fig. 5 (a) to (i). The sketched routes did not always follow 
the same path with respect to the landmarks. 

In the second stage, we showed the 9 maps processed in the 
first stage and a reference map in Fig. 5 (j) to 40 students in 
our building including the sketchers. The subjects were then 
asked to rate the maps and to fill in a questionnaire about the 
reasons for the rating. The main three reasons they 
commented were (1) the same cardinal orientation of a sketch 
with respect to an actual environment, (2) sufficient 
information of landmarks, and (3) a plain path with apparent 
turning points. 

Fig. 6 shows the evaluation result of the 10 maps from A to 

J rated by surveying students. The result depicts averaged 
ratings of each map on a rank of 1 to 10 (1 being best and 10 
being worst) with a standard deviation. Table II summarizes 
the survey result graphed in Fig. 6 across 40 subjects’ ratings. 
The mean rank with its standard deviation, minimum and 
maximum ranks of each map are shown in the table. Not 
surprisingly, the reference map J was rated to the highest 
mean rank. 

To further examine the rough maps, we analyzed the 
spatial relationships among landmarks in terms of existence, 
dimension, position and shape uncertainties of the buildings 
used as landmarks. For estimating the dimension and position 
uncertainties, we fixed the starting position and scaled the 
sketched maps against the reference map. While scaling, we 
used the least-squares method of the distances among the 
centers of landmarks in both the maps. Finally, we 
determined the best scale and estimated the quantities of the 
uncertainties. The percentage amounts of the key 
uncertainties embedded in the sketched maps against the 
reference map are shown in Table III. 

Using the uncertainty values in Table III, we calculated the 
navigability of each map using the navigability measure of Eq. 
(4). As shown in Table IV, the best map excluding a reference 
map had a navigability index of 61.902%, whereas the worst 
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TABLE V 

THE DIFFERENCE BETWEEN ORDERINGS IN THE MAPS 
BY THE SURVEY AND THE NAVIGABILITY MEASURE 

Map Survey 
Order 

Navigability 
Order Difference 

A 3 2 1 

B 6 5 1 

C 2 3 1 

D 7 10 3 

E 10 8 2 

F 5 4 1 

G 4 7 3 

H 9 9 0 

I 8 6 2 

J 1 1 0 

 
TABLE IV 

THE NAVIGABILITY INDICES OF THE SKETCHED MAPS 

Map Navigability [%] 

A 61.902 

B 37.458 

C 46.627 

D 0.008 

E 3.816 

F 44.190 

G 10.831 

H 0.022 

I 29.553 

J 95.068 

 
Fig. 7. Relation of the 10 sketched maps between mean ranks by the 
subjective evaluation and navigability data by the proposed measure. 

map had an index of 0.008%. 
To discuss the relation between the subjective evaluation 

and the navigability by proposed measure, we have included 
the graph of relationship between the mean ranks shown in 
Table II and the navigability indices shown in Table IV. As 
shown in Fig. 7, they seem to be correlated with respect to one 
another. However, we think their theoretical relation may be 
not linear (a dotted line in the figure), because the vertical 
axis is qualitative while the horizontal axis is quantitative in 
the graph. 

Then, we ordered the maps by two different ways, using 
the surveyed rating and using the navigability measure, 
respectively. This gives thereby the maps two kinds of 
ranking of 1 to 10 (1 being best and 10 being worst). Table V 
compares the orderings of the maps. The rough maps 
represented a broad range of uncertainties and the routes 
sketched also did not follow the same path with respect to the 
landmarks. In spite of these variances, the ordering 
differences of each map did not vary widely, moreover 
considering the students’ approximate surveying. The 
differences were less than 3 except for maps D and G, which 
is comparable to the standard deviation of surveyed rating 
(see Table II). 

We can raise the following reasons for the relative 
significance in the ordering differences of the maps D and G. 
In the case of map D, even familiar with the campus, the 
subjects are liable to puzzle over its large simplicity. 
Moreover, it was rated worst by the navigability measure 
because of its very large uncertainties in dimension and 
position. For the case of map G, its deceptive simplicity 
seems to have a positive effect on the subjects familiar with 
our campus. It was, however, also rated low by the 
navigability measure because of its large uncertainties in 
dimension and shape. 

B. Comparison with the Navigability by Simultaneous 
Simulations 
For further validating the measure for navigability, we 

compare navigability values computed by the measure with 

those produced by the simultaneous simulations where the 
four key uncertainties are simultaneously considered. More 
specifically, each of the four key uncertainties has 11 possible 
values from 0 to 100% with 10% interval. Accordingly, there 
are 11x11x11x11 (14,641) samples of simultaneous 
combinations by the four key uncertainties. We have 
executed the experiments in more than one hundred simulated 
environments for each sample of the combinations. The 
navigability outputs are then averaged over several hundreds 
number of simulations. 

As shown in Fig. 8 (a), the experimental results were 
evaluated using absolute errors of the navigability values 
acquired by both the measure and the simultaneous 
simulations. Fig. 8 (b) shows the histogram for the absolute 
errors, where the frequency has decreased exponentially 
according to the absolute errors. The absolute errors exhibit 
the statistics with mean value of 0.141 and standard deviation 
of 0.013. 

The histogram reveals the fact that the navigability measure 
indeed captures the experimental navigability relatively well. 
Although some large deviations did occur, the navigability 
measure was able to generate comparable navigability data 
for the most part. This is very promising considering the small 
number of key uncertainties put on the measure. 
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(b) 

Fig. 8. Comparison between navigability values computed by the 
measure and experimental results produced by the simultaneous 
simulations: (a) absolute errors of navigability (b) histogram of the 
absolute errors. 

We have examined two different methods for validating the 
navigability measure; ordering differences by the survey and 
absolute errors by the simultaneous simulations. The results 
of two validation experiments show the potential feasibility 
of the quantitative navigability measure we proposed. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we have proposed and evaluated a 

quantitative measure of navigability on sketched maps for 
mobile robots. We have validated our navigability measure 
with huge simulated maps. We first compared the simulation 
results with the survey results and then compared navigability 
values computed by the measure with navigability outputs 
produced by the simultaneous simulations of the four key 
uncertainties. The survey study, in which the subjects 
produced and rated rough maps, provides an evidence for the 
effects of key uncertainties on the navigability of the maps. 
While there were some large deviations in the validation 
study by the simultaneous simulations, the results thus far 
seem promising even at the early stages of this work. 

While we analyze and define a navigability measure only 
in terms of the configuration of rough maps, the navigation 
strategy of the robot may influence heavily its navigability. 
The results on proposed navigability measure are limited to 
our navigation strategy and in fact would be changed for a 
different strategy. The present research also provides 
guidelines for constructing the rough maps of high 
navigability: an adequate amount of information included 
(corresponding to existence uncertainty); preserving 

proportions among structures, preserving relative positions of 
structures, and homogeneity of scale (corresponding to 
dimension and position uncertainties); ease of locating 
structures, ease of recognizing structures, and ease of 
identifying goals (corresponding to shape uncertainty). 

Although our results show the reality of the key 
uncertainties, it is clearly not a universal or entire set of 
uncertainties. A future direction of this work will therefore 
focus on other key uncertainties excluded for the moment. 
For example, the key uncertainties will include the number of 
turning points on the path and the uncertainty of road network 
not right-angled, when considering the motion uncertainty of 
robot. These are intended for the robustness of the method to 
create consistent and reliable robot directives based on 
different sketches of various scenes. 

The work on rough maps for robot navigation is not yet 
complete. The work presented here is a step towards the 
quantitative navigability evaluation of rough maps. Another 
future work is to testify the validity of the measure through 
experiments of rough map-based navigation of a real mobile 
robot with real sensory data. 
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