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This paper discusses a sketch interface that can be
used to guide a mobile robot along a specified path
in its unfamiliar place. With the sketch interface, the
user draws a rough map to give navigation tasks to
robots. Because sketched maps often suffer from var-
ious inaccuracies and large errors in landmarks, we
discuss what kinds of uncertainties in the rough maps
would mainly have effects on navigating a robot. The
effects of such inaccuracies on robot navigation are
analyzed in simulated environments. A quantitative
navigability measure of rough maps is then developed
based on the analysis. Experimental results are also
presented for validating the navigability measure.

Keywords: mobile robot, rough map, sketch-based navi-
gation, navigability measure.

1. Introduction

Being able to communicate with robots in the same way
we interact with people has long been a goal of AI and
robotics. The underlying goal of this work is the creation
of a robot interface that allows a novice user to guide a
robot to perform some navigation tasks. As one strategy
for addressing this goal, we have been investigating the
use of rough maps. The user sketches an approximate
map of the robot’s environment and then draws the de-
sired robot trajectory on the map with respect to that en-
vironment.

A Rough map has been investigated previously in our
work [1]. In the work, we have developed a localiza-
tion method using a rough map which alleviates con-
siderable efforts for creating and maintaining the map.
We have been able to gain some insights into what de-
serves to be cardinal uncertainties of the map from the
characteristics of the rough map used for the robot nav-
igation: lack of information, inexact geometric details,
and nonuniform uncertainty model. In this paper, hence,
we take existence, dimension, position, and shape uncer-
tainties of landmarks as key uncertainties in rough maps.
They were also demonstrated as three strong criteria for
a good map in [2]: A good map must, first of all, help
users position themselves in an environment (dimension
and position uncertainties); next, it must contain an ade-
quate amount of information (existence uncertainty); and

finally, the structures drawn on the map should be recog-
nizable (shape uncertainty).

Robot navigation in this work is modeled as a procedu-
ral task (i.e., a sequence of steps) to mimic human navi-
gation process. Since navigation failures cause a robot to
stray from its intended route, a robot reaching a desired
destination by following a specified path is a good indica-
tion of the navigation success using the rough maps. We
carry out experiments to evaluate rough maps with the key
uncertainties using our previous localization method for
robot navigation in large-scale outdoor space. In the ex-
periments, we judge the navigation succeeded if the robot
arrives at the destination along the predefined trajectory.
We define “navigability” as success rate that the robot can
reach the destination. From the experimental results, we
derive a quantitative navigability measure for evaluating a
rough map from its degree of key uncertainties.

We are also interested in the applicability of the navi-
gability measure to rough maps, since we are investigat-
ing the use of such maps for robot navigation. Rough
maps are generally incomplete, distorted and schematic,
and they tend to mix metrics. As a result, scoring for the
purpose of assessment on rough maps is a challenge. We
therefore conduct a survey that collects a set of sketched
maps and assesses the navigability measure by comparing
the measure directly applied to the maps with their subjec-
tive evaluation. Furthermore, we validate the navigability
measure by comparing computed values of the measure
with navigability outputs both from simultaneous simula-
tions of the four key uncertainties.

In the remaining sections of the paper, we first de-
scribe related works on human navigation and the use of
sketched maps. We also review briefly our previous work
of multi-hypothesis localization method using a rough
map. We determine a navigability measure of rough maps
based on extensive experiments. We then present and dis-
cuss experimental results for validating the navigability
measure. The conclusion includes a brief discussion on
the current status and future directions.

2. Related Work

2.1. Human Navigation

Earlier works indicated the importance of environment
landmarks and their spatial relationships in human navi-
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Fig. 1. Manifold types of maps (a) a view of our campus
map, (b) a guide map of the campus, (c) a map sketched on
paper, (d) an adjusted map fitted into the sketch map.

gation [3, 4]. The works suggested that spatial relation-
ships of landmarks with respect to the desired path may
be useful not only for robot navigation but also as an in-
terface between a robot and its user.

Humans navigate in the world using dead reckoning,
memories of learned landmarks and their spatial relations.
Particularly, the usage of landmarks is vitally important in
human navigation. The studies based on the vision for ac-
tion and perception paradigm show that humans use land-
marks with two purposes: positioning and servoing [5].

Michon and Denis [6] provide insights into how land-
marks are used for human navigation and what are consid-
ered to be key points on the route. In studying the route
points, they found that the landmarks were used more fre-
quently at four types of critical points: (1) the starting po-
sition, (2) the destination position, (3) the turning points,
and (4) the major intersections. People thus use the rela-
tive positions of landmarks as cues to keep on track and
to determine when to turn left or right. To incorporate
knowledge of human navigation and the qualitative na-
ture of the spatial information, we expect the rough map
to produce what people would consider as important.

2.2. Sketched Map
A sketched map is drawn to help people navigate along

a path for the purpose of reaching a destination. A guide
map for visitors to our university campus can be consid-
ered as a kind of rough map (see Fig. 1(b)). An example is
shown in Fig. 1(c) sketched from the actual environment
of our campus in Fig. 1(a). Fig. 1(d) shows the same map
after it has been arranged so as to be parallel or orthogo-
nal. Although rough maps do not generally contain com-
plete information about a region, they do provide some
relevant information for the navigation task.

People sketch rough maps to include landmarks at key
points along the path and use spatial relationships to help

depict the trajectory. Tversky and Lee [3] found that
sketched maps often simplify, even distort, structural in-
formation of the environment. This shows that sketches
in many domains are not presentations of reality, but rep-
resentations of reality [4].

A few works which use sketches to direct robot move-
ment have been done. In the work of Kawamura et al.,
the user specifies a robot path by selecting via points on
a sketch of the environment [7]. Artificial landmarks are,
however, placed in the scene and on the sketch for nav-
igation. In [8], Stuck presented a system for detecting
navigational mistakes made by mobile robots in open en-
vironments. It placed more emphasis on visual mistakes
like misrecognition. The focus of his work was only to
detect and diagnose global mistakes which lead the robot
down incorrect paths.

The work similar to ours is that of Skubic et al., in
which they describe the use of sketched maps for direct-
ing mobile robot navigations [9, 10]. A route is extracted
from the sketched path in the form of a sequence of land-
mark states with corresponding actions, where each land-
mark state is a qualitative condition based on the spatial
relationship of landmarks relative to the robot. Their work
was adequate for simple map configurations but not robust
in more complex environments. And they did not discuss
how the uncertainties in the sketched map affect the navi-
gability of a simulated robot using the map.

3. Rough Map-Based Navigation

This section briefly reviews our multi-hypothesis local-
ization method using a rough map. Refer to our previous
paper [11] for more details.

3.1. Rough Map
We investigated the problem of navigation in an out-

door environment about which the robot has some a priori
information available, namely in the form of a rough map.
The rough map serves as a global map of the environ-
ment. This map may not be an accurate representation of
the environment but nevertheless it makes the process of
exploration, particularly of large-scale space, simpler for
the robot. The rough map we use is 2-dimensional and
consists of line segments representing paths and buildings
in the environment.

We approximate the buildings present in an environ-
ment to polygonal objects on the map. We assume that
the buildings in the rough map have planar walls and that
these planes have both horizontal and vertical edges. This
is often the case for buildings as they have windows and
doors. We also assume a flat polygon on the top of a build-
ing as a roof since roof details on a tall building cannot be
seen from the ground level. The characteristics of rough
map can be thus summarized as follows; the exact model
of map uncertainty is unknown; the uncertainty may be
not uniform across the map; the geometric details such
as exact outlines, exact dimensions and exact poses of
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buildings are not available; the map also lacks informa-
tion about exact models of the building structures.

Relative poses between landmarks in a rough map are
allowed to be uncertain. The uncertainty of rough map
might cause the robot pose to be inconsistent if it is rep-
resented in the global coordinate system of reference. To
address this problem, we represent the robot pose in a lo-
cal coordinate system attached to a landmark which the
robot has recognized recently. When the robot finds a
new landmark, the robot changes the local coordinate sys-
tem from the old landmark to the new one with coordinate
transformation of its pose based on the relative pose be-
tween the old and new landmarks. We refer to the land-
mark as a local origin. As the robot moves, it changes the
local origin. More specifically, we define the robot pose
as a pair of a local origin and the pose in a local coor-
dinate system attached to the local origin. Landmarks in
the building with the local origin would have smaller po-
sitional uncertainty in the local coordinate system than in
the global one thereby becoming easier to recognize.

3.2. Multi-Hypothesis Localization

The Kalman filter acts as a pose tracker in this pa-
per. But, a false matching of the observed features to the
model features can lead to an irrecoverable lost situation
if only a single distribution is maintained. Although the
most credible estimation at one time turns out to be to-
tally wrong, a Multiple Hypothesis Localization (MHL)
allows alternative pose estimates to be maintained instead
of tracking only single best hypothesis. The MHL method
has been widely used to solve global localization prob-
lems, in which a robot has no knowledge of its initial pose.
Instead of starting with an empty hypothesis, in our work,
we start with a highly reliable hypothesis of robot pose.
A starting robot pose around the true pose and its uncer-
tainty of random size must be supplied by a user.

Our localization method explicitly tracks multiple pose
hypotheses, via multiple Kalman filters using the ordered
data associations of multiple visual features. The multiple
visual features are extracted from observed buildings by
using stereo vision: nonvertical borders for the vanishing
points to calculate the wall directions of buildings, verti-
cal borders corresponding to the corners of buildings and
disparity regions for matching with the walls of buildings.
We keep only feasible hypotheses by eliminating infeasi-
ble associations of observations and targets using several
heuristics.

4. Definition of a Navigability Measure
Through Simulated Navigations

We carried out experiments to measure the navigability
of a mobile robot in more than one hundred simulated en-
vironments according to the key uncertainties mentioned
before. This section proposes a quantitative navigability
measure from the experimental results.

Fig. 2. An environmental map (rectangles: landmarks of
buildings; solid rectangles: landmarks along the path; a solid
circle: a starting position; a solid square: a destination posi-
tion; solid triangles: crossroads at subgoals; dashed arrows:
a robot path).

4.1. Simulation Implementation

We use our multi-hypothesis localization method using
a rough map for analyzing the robot behavior in simu-
lated environments [1]. The simulation system includes a
representation of the environment, a vision simulator, and
a motion simulator. These components are analogous to
real robot’s sensing and basic navigation capabilities.

The environmental map is an internal representation
of the simulated environments where a simulated robot
moves. It consists of two types of objects: paths and
buildings. In the simulations, a rough map defined in our
previous work is used as the environmental map. Fig. 2
shows a simulated environment used in one of the simula-
tions, where there are several subgoals at turning points, a
starting position, and a destination.

The vision simulator simulates a stereo vision consist-
ing of two conventional cameras with larger field-of-view
than used in our previous work. It uses the environmental
map to extract observed visual features from the simulated
robot’s point of view.

The motion simulator simulates the execution of mo-
tion commands. The simulated robot move away from
the starting position, turns at the subgoals and stops at the
destination position in the figure. Since we are using our
previous method of multi-hypothesis localization [11], the
detailed strategy of the simulated motion is as follows:
When the robot recognized a subgoal or a destination, its
pose hypothesis would be reserved. When the robot failed
to recognize a goal, it travels over more distances search-
ing for the goal. When the robot has missed or ended
up failing to locate a goal, its pose hypothesis would be
eliminated. The survived hypotheses would be merged
if allowable. The robot goes back to one of the merged
pose hypotheses and moves on to the target position from
its current position without further observations. When
the robot finally has misrecognized or not recognized any
goal, this leads it to turn at the wrong corner or to the
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wrong direction causing a navigation failure on the sim-
ulated robot. In the paper, we focus mainly on how the
uncertainties embedded in rough maps affect the naviga-
bility of a simulated robot. Hence, the simulations de-
scribed below assume no motion uncertainty of the robot
for the moment.

4.2. Simulation Results and a Navigability Measure
The simulated rough maps model the sketch inaccura-

cies by the key uncertainties such as existence, scaling or
shaping of objects with respect to the real environment.
In our experiment, each of the four key uncertainties has
11 possible values from 0 to 100% with 10% interval. Six
different paths are also ready for the experiment. Accord-
ingly, there will be 4×11×6 combinations in each build-
ing of the simulated environments by the values of indi-
vidual key uncertainty and the paths. For each of the com-
binations, we have executed the experiments in more than
one hundred simulated environments. All the key uncer-
tainties are related to only the landmarks along the basic
path as shown in Fig. 2.

The existence uncertainty is the percentage of removed
landmarks excluding subgoals at turning points. The
shape uncertainty is the percentage of reshaped landmarks
including the subgoals. The percentages of dimension and
position uncertainties were generated relative to the di-
mensions of each landmark including the subgoals. In
the simulations of 50% key uncertainties, for example,
50% of landmarks in the cases of existence and shape un-
certainties are randomly altered. In the cases of dimen-
sion and position uncertainties, 0 to 50% of landmarks
are modified at random because these uncertainties tend
to mix metrics in the sketched maps.

Figure 3 presents some navigation results of test runs
using the simulated rough maps with the key uncertainty
of 50%. Notice that the test runs in the figure arrive at
the same destination (the landmark on top right) and take
into consideration only the landmarks on the path (solid
rectangles in Fig. 2). The figure shows that the system
may handle inaccuracies incident to sketching. The el-
lipses in the figure denote the unmagnified 3σ error levels
of the robot positions on the global or real (for shape un-
certainty) map using the MHL method remarked before.

In Fig. 3(a), we removed several objects to show that
the simulated rough map does not have to correspond ex-
actly to the real environment. It is evident that the sketch
does not have to include every piece of information about
the environment, but just the information necessary for
the robot to stay on track.

We have also resized and moved objects along the verti-
cal and the horizontal axes, and reshaped objects in the en-
vironment as shown in Fig. 3(b), (c) and (d), respectively.
The robot travels longer distances, but still achieves its
destination that was sketched. All tests from most of the
simulations yielded similar results of navigation success.
However, some of the simulated environments were so in-
accurate that it was impossible for the robot to find the
correct its path and arrive at the destination (causing nav-
igation failures.)

(a) (b)

(c) (d)

Fig. 3. Some navigational results of a simulated robot using
a rough map with the 50% uncertainty of (a) existence, (b)
dimension, (c) position and (d) shape in the landmarks of
buildings along the path shown in Fig. 2.

Figure 4 presents the averaged values with standard
deviation and the functions fitted to navigability data of
the robot using the rough maps with the key uncertain-
ties. The navigability is computed as the likelihood that
the robot can reach the assigned destination. The proba-
bility of navigational success, ps, is defined as:

ps =
# of navigations succeeded

# of navigational runs
. . . . . . (1)

We have fitted the following sigmoid function, S(x):

S(x) =
a

1+ e−
(x−b)

c

. . . . . . . . . . . (2)

into the result of navigability calculations by the key un-
certainties of dimension, position and shape, respectively,
because the change of navigability data shows an s-shaped
curve. More precisely, it has two horizontal asymptotes
in our case to 0% and 100% of navigability, and the curve
makes a smooth transition from one to the other with one
inflection point.

Surprisingly, the existence uncertainty in rough maps
had a different effect on the navigability from the other
ones (see Fig. 4). As mentioned above, the existence
uncertainty is the percentage of removed landmarks ex-
cluding subgoals. Assuming no motion uncertainty of the
robot for now, we think the robot is likely to recognize the
subgoals when there exist all landmarks or no landmarks
between them. The robot is, however, liable to misrec-
ognize the subgoals when there exist adjacent landmarks
on the same side of them. We have fitted the following
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(a)

(b)

(c)

(d)

Fig. 4. Mean navigability data [%] with standard deviation
and the fitted curve using the simulated rough maps with re-
spect to the key uncertainty [%] of (a) existence, (b) dimen-
sion, (c) position, and (d) shape in landmarks.

Table 1. Parameter values of fitted navigability functions.

Uncertainty a b c
Existence 0.250 0.400 0.200

Dimension 0.996 0.954 -0.147
Position 1.033 0.499 -0.148
Shape 2423 -12.31 -1.578

Gaussian-based function, G(x):

G(x) = 1−ae−
(x−b)2

2c2 . . . . . . . . . . (3)

into the result of navigability calculations by this key un-
certainty. Table 1 describes the parameter values of one
Gaussian-based function and three sigmoid functions that
fitted for the navigability data under the key uncertainties.

From the analysis of preliminary simulations by com-
bining the key uncertainties, we have found there were
weak correlations among the effects of key uncertainties
on the navigability. Consequently, we performed the sim-
ulations independently according to individual key uncer-
tainties and determined the navigability measure N(e, d,
p, s) of a rough map by a product of fitted navigability
functions:

N(e,d, p,s) = G(e) ·S(d) ·S(p) ·S(s) . . . . (4)

where e, d, p, and s represent the uncertainty of exis-
tence, dimension, position, and shape in the map, respec-
tively. The reason of the product is because the navigabil-
ity might be aggravated if at least one value of the naviga-
bility functions is quite low.

5. Experiments for the Validation of Navigabil-
ity Measure

This section describes the validation experiments for
the assessment of our navigability measure in two dis-
tinct ways. First, we compare the ordering of maps on
the measure directly applied to a set of sketched maps
with their subjective evaluation by experimental survey.
Second, we also compare navigability values computed
by the measure with those produced by the simultaneous
simulations, where the four key uncertainties are simulta-
neously considered.

5.1. Comparison of Map Orderings by the Survey
and the Measure

The first experiment of survey for validation has two
stages. In the first stage, the students in our building (M4
in Fig. 5) were asked to sketch a map showing the en-
vironment and the route to the library on paper. Route
sketches are composed of the sequence of a starting posi-
tion, progressions, turnings and a destination position. We
did not ask that the sketches be drawn to an accurate scale
and did not expect that they would be. The 9 sketched
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(a) Map A (b) Map B

(c) Map C (d) Map D

(e) Map E (f) Map F

(g) Map G (h) Map H

(i) Map I (j) Reference Map J

Fig. 5. Adjusted maps from sketches surveyed by students
with a reference map for their subjective evaluation, also de-
scribing a route through our university campus (from M4
building to Library).

maps after adjusted for analysis are shown in Fig. 5(a) to
(i). The sketched routes did not always follow the same
path with respect to the landmarks.

Fig. 6. Mean ranks of student’s rating from maps A to J,
with standard error bars. The rating of 1 indicates the best
map, while 10 is the worst map.

Table 2. Rank values with standard deviation of maps.

Map Mean
rank

Standard
deviation

Min. rank Max. rank

A 4.71 2.158 1 9
B 5.86 2.384 2 9
C 4.61 2.671 1 10
D 5.93 2.308 2 10
E 7.18 2.525 2 10
F 5.43 2.150 2 9
G 4.79 2.166 2 8
H 7.04 2.769 2 10
I 7.00 2.539 2 10
J 2.57 2.559 1 9

In the second stage, we showed the 9 maps processed
in the first stage and a reference map in Fig. 5(j) to 40
students in our building including the sketchers. The sub-
jects were then asked to rate the maps and to fill in a ques-
tionnaire about the reasons for the rating. The main three
reasons they commented were (1) the same cardinal orien-
tation of a sketch with respect to an actual environment,
(2) sufficient information of landmarks, and (3) a plain
path with apparent turning points.

Figure 6 shows the evaluation result of the 10 maps
from A to J rated by surveying students. The result de-
picts averaged ratings of each map on a rank of 1 to 10
(1 being best and 10 being worst) with a standard devi-
ation. Table 2 summarizes the survey result graphed in
Fig. 6 across 40 subjects’ ratings. The mean rank with
its standard deviation, minimum and maximum ranks of
each map are shown in the table. Not surprisingly, the
reference map J was rated to the highest mean rank.

To further examine the rough maps, we analyzed the
spatial relationships among landmarks in terms of exis-
tence, dimension, position and shape uncertainties of the
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Table 3. Percent levels of key uncertainties in the maps.

Map Existence Dimension Position Shape
A 84 59 28 30
B 84 80 43 30
C 50 60 27 40
D 84 250 134 30
E 72 93 83 40
F 58 69 31 40
G 67 110 44 50
H 84 154 113 20
I 72 89 40 40
J 0 0 0 0

Table 4. Navigability indices of the sketched maps.

Map Navigability [%]
A 61.902
B 37.458
C 46.627
D 0.008
E 3.816
F 44.190
G 10.831
H 0.022
I 29.553
J 95.068

buildings used as landmarks. For estimating the dimen-
sion and position uncertainties, we fixed the starting po-
sition and scaled the sketched maps against the reference
map. While scaling, we used the least-squares method
of the distances among the centers of landmarks in both
the maps. Finally, we determined the best scale and es-
timated the quantities of the uncertainties. The percent-
age amounts of the key uncertainties embedded in the
sketched maps against the reference map are shown in Ta-
ble 3.

Using the uncertainty values in Table 3, we calculated
the navigability of each map using the navigability mea-
sure of Eq. (4). As shown in Table 4, the best map exclud-
ing a reference map had a navigability index of 61.902%,
whereas the worst map had an index of 0.008%.

To discuss the relation between the subjective evalu-
ation and the navigability by proposed measure, we have
included the graph of relationship between the mean ranks
shown in Table 2 and the navigability indices shown in
Table 4. As shown in Fig. 7, they seem to be correlated
with respect to one another. However, we think their the-
oretical relation may be not linear (a dotted line in the
figure), because the vertical axis is qualitative while the
horizontal axis is quantitative in the graph.

Fig. 7. Relation of the 10 sketched maps between mean
ranks by the subjective evaluation and navigability data by
the proposed measure.

Table 5. Difference between the orderings in the maps by
the survey and the navigability measure.

Map Survey
Order

Navigability
Order

Difference

A 3 2 1
B 6 5 1
C 2 3 1
D 7 10 3
E 10 8 2
F 5 4 1
G 4 7 3
H 9 9 0
I 8 6 2
J 1 1 0

Then, we ordered the maps by two different ways, us-
ing the surveyed rating and using the navigability mea-
sure, respectively. This gives thereby the maps two kinds
of ranking of 1 to 10 (1 being best and 10 being worst).
Table 5 compares the orderings of the maps. The rough
maps represented a broad range of uncertainties and the
routes sketched also did not follow the same path with re-
spect to the landmarks. In spite of these variances, the
ordering differences of each map did not vary widely,
moreover considering the students’ approximate survey-
ing. The differences were less than 3 except for maps D
and G, which is comparable to the standard deviation of
surveyed rating (see Table 2).

We can raise the following reasons for the relative sig-
nificance in the ordering differences of the maps D and
G. In the case of map D, even familiar with the campus,
the subjects are liable to puzzle over its large simplicity.
Moreover, it was rated worst by the navigability measure
because of its very large uncertainties in dimension and
position. For the case of map G, its deceptive simplic-
ity seems to have a positive effect on the subjects familiar
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(a)

(b)

Fig. 8. Comparison between navigability values computed
by the measure and experimental results produced by the si-
multaneous simulations: (a) absolute errors of navigability
data (b) histogram of absolute errors.

with our campus. It was, however, also rated low by the
navigability measure because of its large uncertainties in
dimension and shape.

5.2. Comparison with the Navigability by Simulta-
neous Simulations

For further validating the measure for navigability,
we compare navigability values computed by the mea-
sure with those produced by the simultaneous simulations
where the four key uncertainties are simultaneously con-
sidered. More specifically, each of the four key uncertain-
ties has 11 possible values from 0 to 100% with 10% in-
terval. Accordingly, there are 11× 11× 11× 11 (14,641)
samples of simultaneous combinations by the four key un-
certainties. We have executed the experiments in more
than one hundred simulated environments for each sam-
ple of the combinations. The navigability outputs are then
averaged over several hundreds number of simulations.

As shown in Fig. 8(a), the experimental results were
evaluated using absolute errors of the navigability values
acquired by both the measure and the simultaneous sim-
ulations. Fig. 8(b) shows the histogram for the absolute

errors, where the frequency has decreased exponentially
according to the absolute errors. The absolute errors ex-
hibit the statistics with mean value of 0.141 and standard
deviation of 0.013.

The histogram reveals the fact that the navigability
measure indeed captures the experimental navigability
relatively well. Although some large deviations did occur,
the navigability measure was able to generate comparable
navigability data for the most part. This is very promising
considering the small number of key uncertainties put on
the measure.

We have examined two different methods for validating
the navigability measure; ordering differences by the sur-
vey and absolute errors by the simultaneous simulations.
The results of two validation experiments show the po-
tential feasibility of the quantitative navigability measure
we proposed. The present study also shows that the map
sketches, when carefully analyzed and when evaluated by
others for goodness, provide principles for designing the
effective rough maps: an adequate amount of information
included (corresponding to existence uncertainty); pre-
serving proportions among structures, preserving relative
positions of structures, and homogeneity of scale (corre-
sponding to dimension and position uncertainties); ease
of locating structures, ease of recognizing structures, and
ease of identifying goals (corresponding to shape uncer-
tainty).

6. Conclusion and Future Work

In this paper, we have proposed and evaluated a quan-
titative measure of navigability on sketched maps for mo-
bile robots navigating through unfamiliar large-scale en-
vironments. We have validated our navigability measure
with huge simulated maps. We first compared the sim-
ulation results with the survey results and then compared
navigability values computed by the measure with naviga-
bility outputs produced by the simultaneous simulations
of the four key uncertainties. The survey study, in which
the subjects produced and rated rough maps, provides an
evidence for the effects of key uncertainties on the nav-
igability of the maps. While there were some large de-
viations in the validation study by the simultaneous sim-
ulations, the results thus far seem promising even at the
early stages of this work. The present research also pro-
vides guidelines for constructing the rough maps of high
navigability.

While we analyze and define a navigability measure
only in terms of the configuration of rough maps, the navi-
gation strategy of the robot may influence heavily its nav-
igability. The results on proposed navigability measure
are limited to our navigation strategy and in fact would be
changed for a different strategy.

Although our results show the reality of the key uncer-
tainties, it is clearly not a universal or entire set of un-
certainties. A future direction of this work will therefore
focus on other key uncertainties excluded for the moment.
For example, the key uncertainties will include the num-
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ber of turning points on the path and the uncertainty of
road network not right-angled, when considering the mo-
tion uncertainty of robot. These are intended for the ro-
bustness of the method to create consistent and reliable
robot directives based on different sketches of various
scenes.

The work on rough maps for robot navigation is not yet
complete. The work presented here is a step towards the
quantitative navigability evaluation of rough maps. An-
other future work is to testify the validity of the measure
through experiments of rough map-based navigation of a
real mobile robot with real sensory data.
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