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This paper deals with the problem of estimating the human upper body orientation. We propose a frame-
work which integrates estimation of the human upper body orientation and the human movements. Our
human orientation estimator utilizes a novel approach which hierarchically employs partial least
squares-based models of the gradient and texture features, coupled with the random forest classifier. The
movement predictions are done by projecting detected persons into 3D coordinates and running an
Unscented Kalman Filter-based tracker. The body orientation results are then fused with the movement
predictions to build a more robust estimation of the human upper body orientation. We carry out compre-
hensive experiments and provide comparison results to show the advantages of our system over the other
existing methods.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Human body orientation estimation is one of challenging yet
useful tasks for the mobile robot and surveillance applications. The
human body orientation can tell us how people interact with each
other in the surveillance scenes. For example, we may predict that
a group of persons facing each other for a long time are having
conversation, or other social semantic predictions such as waiting
for the bus together.

From the mobile robots point of view, the human body orienta-
tion can assist the robot to get a better prediction for avoiding a
person when doing navigation tasks. It also helps the robot to
make a social interaction with the human in outdoor navigation,
such as approaching a person and asking the way. Here the robot
certainly needs the estimation of human orientation for facing the
person.

Several works try to accomplish the human body orientation
problem. Andriluka et al. [3] use banks of viewpoint specific part
based detectors and linear Support Vector Machine (SVM) for
estimating the whole body orientation. Another recent work is
done by Weinrich et al. [4] which performs the human upper body
orientation estimation using Histogram of Oriented Gradient
(HOG) features and SVM Tree. A work by Baltieri et al. [21] employ
to), jun.miura@tut.jp (J. Miura).
a Mixture of Approximated Wrapped Gaussian (MoAWG) weighted
by the detector outputs for increasing the correct estimation rates.
The above researchers do not consider how the person movements
will affect the overall estimation results.

One notable work by Chen et al. [5] uses multi-level HOG features
and sparse representation for classifying the human pose. They also em-
ploy a soft-coupling technique between thewhole body orientation and
its velocity using the particle filter framework.

To solve the problemswe havementioned above, here we propose a
system for detecting and estimating the human upper body orientation,
as well as its motion. We prefer to use the upper body part rather than
the whole body for gaining the robustness under occlusion; the full
body is often partially occluded by small objects such as chair, table,
bicycle, and so on.

Our main contribution resides in the use of the partial least
squares (PLS)-based model of gradient and texture features for
estimating the human upper body orientation. Here, our PLS
model is a modification of the one used in [16] which has been
successfully applied for human detection.We also provide an Unscented
Kalman Filter (UKF) framework integrating the human movement
prediction and the orientation estimation for improving the estimation
results.

We organize the paper as follows. First we describe the detection
and estimation of human upper body orientation using partial least
squares models in Section 2. Section 3 explains the integration of the
orientation estimation results and the tracking. We then provide the
comparison of several methods and the result of extensive experiments
in Section 4. Lastly, we conclude ourwork and give some possible future
works.
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http://dx.doi.org/10.1016/j.imavis.2014.08.002
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http://www.sciencedirect.com/science/journal/02628856
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Fig. 1. Eight classes of the human upper body orientation, representing (from left to right) front, front-left, left, back-left, back, back-right, right, and front-right directions.
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2. Model-based human upper body orientation estimation

2.1. Hierarchical system

Our system is built in a hierarchical manner. First we detect and
create bounding boxes around the human upper body using a fast
detector. These detection results are then fed to the orientation
estimator part. We divide the orientation into eight quantization
(see Fig. 1). Results from the detector and the orientation estimator
are used as the observation inputs for the tracker. Fig. 2 explains
our framework on the human upper body orientation estimation as
described above.

Our system is composed of the image-based orientation estima-
tion and the tracking system (see Fig. 2). The influence between
the systems is one-directional. That is, the orientation estimation
system runs independently, and its results are used by the tracking
system for increasing the robustness of its pose and motion estimation.
This also implies that the orientation estimation system can be applied
to still images.
2.2. Human upper body detection

Histogram of Oriented Gradients (HOG) [1] is one of state-of-the-art
descriptor for the whole body person detection. However, the original
HOG algorithm is slow and unsuitable for the real time applications.
Here we exploit the extended work of HOG by [12], which employs
Adaboost for selecting features and cascade rejection for speeding up
the detection time. Instead of using the whole human body, we prefer
to exploit the upper body part for gaining the robustness under
occlusion, as we will show in Section 4.2. The detection results
(bounding boxes of the human upper body) are then used as the
input for the orientation estimator part.
Fig. 2. Diagram of the human upper bo
2.3. Extracting features for human upper body orientation estimation

The other works (e.g. [4] and [5]) solely depend on the gradient
features, which capture the body shape. For the human upper body
orientation case, we make an assumption that using only the body
shape is not enough, for example, there is no big difference between
the shape of the body facing front and back. Therefore, we propose a
combination of the gradient-based and texture-based features which
grab the shape and the texture cues. Here we expect the textured part
of the body such as the face will be captured. We then apply the modi-
fied partial least squares (PLS)models for enhancing the important cues
of the human orientation.

2.3.1. Shape cue
For capturing the human upper body shape, we use a multi-level

HOG descriptor [1]. The gradient magnitude for each upper body
image sample is first computed using 1-D mask [−1 0 1] on each x
and y direction. Every sample is divided into 3 × 4, 6 × 8, and 12 × 16
blocks, where each block consists of four cells. The gradient orientation
is then quantized into nine bins. Overall we have 252 blocks and 9072
dimensional feature vectors of HOG descriptor.

2.3.2. Texture cue
Weuse Local Binary Pattern (LBP), adopting thework of [2], tomake

a texture descriptor. We calculate image textures using LBP8,1 operator
for each pixel

ILBPc ¼
X7
p¼0

2pς Ip−Ic
� �

; ς að Þ ¼ 1 for a≥0
0 otherwise;

�
ð1Þ

where Ic is the center pixel from which we calculate the LBP value
ILBPc and p is eight-surrounding pixels of Ic. We then divide the LBP
dy orientation estimation system.

image of Fig.�1
image of Fig.�2
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images into multiple blocks similar to the HOG features above. For
each block, we make a histogram containing 59 labels based on
uniform patterns.1 This procedure gives us 14,868 dimensional
feature vectors in total.

2.4. Partial least squares for modeling features

2.4.1. Partial least squares
Partial least squares (PLS) is a statistical method used for obtaining

relations between sets of observed variables through the estimation of
a low dimensional latent space which maximizes the separation be-
tween samples with different characteristics []. The PLS builds new pre-
dictor variables called latent variables, as combinations of a matrix X of
the descriptor variables (features) and a vector y of the response vari-
ables (class labels).

Let us consider a problemwith γ samples,X⊂ℝδ be an δ-dimensional
space representing the feature vectors and y⊂ℝ denote a 1-dimensional
space of the class labels. The PLS then decomposes the (γ × δ) matrix of
zero mean variables X and the vector of zero mean variables y into

X ¼ TPT þ E;
y ¼ UqT þ r;

ð2Þ

where T andU represent (γ× s)matrices of s extracted latent vectors, the
(δ × s) matrix P and the (1 × s) vector q are the loadings, and the (γ × δ)
matrix E and the (γ × 1) vector r are the residuals.

Here we implement the nonlinear iterative partial least squares
(NIPALS) algorithm [17] to find a set of projection vectors (weight
vectors)W = {w1, w2, …, ws}such that

cov ti;uið Þ½ �2 ¼ max
jwi j¼1

cov Xwi; yð Þ½ �2; ð3Þ

where ti is the i-th column of matrix T, ui is the i-th column of matrix U,
and cov(ti, ui) is the sample covariance between latent vectors ti and ui.
The process of constructing projection vectors W is shown in
Algorithm 1.

Algorithm 1. PLS/NIPALS algorithm
2.4.2. Block Importance Feature Model
Here we introduce our PLS-based feature models, Block Importance

Feature Model of PLS (BIFM-PLS). We also provide another simple PLS
1 According to the original paper [2], the uniform patterns contain atmost two bit tran-
sitions from 0 to 1 and vice versa. For an 8-bit data, there are 58 uniform patterns, and the
other patternswhich havemore than two bit transitions are grouped into one label, sowe
have the total 59 labels.
model called Combined FeatureModel of PLS (CFM-PLS) for comparison
purpose.

The Combined Feature Model of PLS (CFM-PLS) is created by
concatenating all of HOG–LBP features into one vector, and simply run
the PLS algorithm on it with specified number of the latent vectors. As
the result, the CFM-PLS produces a reduced set of features by projecting
the feature vectors f ⊂ X onto the weight vectors,

x⌣ ¼ Wf : ð4Þ

This result is then used as the input for the classifier. Fig. 3 explains
the procedure of building CFM-PLS.

The CFM-PLSmethod,which resembles anordinary PLS technique, is
only used for comparison purposes, and from now we focus on the
BIFM-PLS method.

The Block Importance FeatureModel of PLS (BIFM-PLS) is built by an
idea that not all of blocks or features have a high contribution to the
classification. Here we want to examine the contribution of each block
and discard the one which has low importance. Unlike the CFM-PLS
which highly reduces the feature space, the BIFM-PLS is intended to
retain some details about the features to be fed up to the classifier.

We adopt and extend the method of [16] for picking out the repre-
sentative blocks. For creating BIFM-PLS,we employ the feature selection
called Variable Importance on Projection (VIP) (see [16] and [18]). The
VIP gives a score for each feature representing its predictive power in
the PLS model. The VIP of the i-th feature f is given by

VIPi fð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ
Xp
j−1

b2jw
2
ij

Xp
j¼1

b2j

vuuuuuuuut
; ð5Þ

where κ is the number of features,wij denotes the i-th element of vector
wj, and bj represents the regression weight for the j-th latent variable,
bj = uj

Ttj.
We then extend the definition of VIP by introducing block impor-

tance score (BIS). The BIS ranks the predictive power of each block in
the PLS model. The BIS on a multi-level blocks exhibits a “hierarchical”
modeling, which first tries to find the important blocks from the
multi-level/multi-size blocks and retrieve more detail information
from the blocks which have better importance score. Algorithm 2 and
Fig. 4 show the procedure of creating the BIFM-PLS model.

The BIFM-PLS algorithm consists of two important stages: building
the block importance and projecting the features on the important
block. Let n be the number of blocks for each HOG and LBP features, m
be the total number of concatenated HOG-LBP features in one block, fi
denotes the feature sets at the i-th block, and fi,j represents the j-th fea-
ture at the i-th block with i = {1, …, n} and j = {1,…, m}.

In the first stage, we extract a PLSmodel, take first p1 latent variables
for each block, and concatenate them to build a model f first, as follows

f firsti ¼ PLS f i;p1ð Þ; ð6Þ

where PLS(fi, p1) is a function for extracting p1 elements from fi. Here
fi
first

has element f firsti; j1
where j1 = {1, …, p1}.

We assume that a small number of p1 are enough to see the
contribution of each block to the orientation estimation, since the PLS
considers the response variables (i.e. class labels). To see the importance
of each block, we compute the VIP scores using Eq. (5) and get the block
importance score (BIS) as

BISi ¼
1
p1

Xp1
j1¼1

VIP f firsti; j1

� �
; i ¼ 1;…;n: ð7Þ



Fig. 3. Extracting features using CFM-PLS.
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The top part of Fig. 4 shows the processes explained by Eqs. (6) and
(7) above.

In the second stage, we build the BIFM feature vectors by calculating
and concatenating the first p2 latent variables on the important blocks,
similar to Eq. (6)

ð8Þ

The blocks which have BIS under the threshold , which mean less
important blocks, are then discarded. These procedures are illustrated
by the bottom part of Fig. 4.

Here we use p2 N p1, to get more detail information on each impor-
tant block. We will examine the proper value of p1 and p2 in the exper-
imental section (Section 4.4).

Algorithm 2. BIFM-PLS algorithm
2.5. Random Forest

One of the notable classifier which works well on the multi-class
data is Random Forest, introduced by Breiman [8]. It is an ensemble
learning method which combines the prediction of many decision
trees using a majority vote mechanism. The Random Forest is devoted
for its accuracy on the large dataset and multi-class learning. These ad-
vantages make us choose the Random Forest for training our eight-
orientation classification problem with a large set of features.

Our Random Forest is constructed by multiple trees T =
{T1, T2, …, TN}, where N is number of trees. Let di∈Df gi¼1…K denote K
training sets and ci∈Cf gi¼1…K be its corresponding labels or classes (in
our case, we have eight classes, C ¼ C1; C2;…; C8f g), where D⊂ℝM is
the feature space. In the training phase, the Random Forest learns the
classification function T : D→C. Details of the Random Forest algorithm
can be discovered at the original paper [8].We use a linear split function
[19]

Φ fð Þ ¼ qT f þ z; ð9Þ

where q is a vector which has the same dimensions as the feature vector
f and z is a random number. The recursive training is run until the
stopping criteria are reached, i.e. the maximum depth is met or no
further information gain can be drawn.

In the testing phase, for a test case d, the RandomForest provides the
posterior probability of each class as

p cjdð Þ ¼ 1
N

XN
i¼1

pi cjdð Þ; ð10Þ

where

pi cjdð Þ ¼ Λ i;cXc8
j¼c1

Λ i; j

; ð11Þ

pi(c|d) is the probability estimation of class c∈C given by the ith tree, and
Λi,c is the number of leaves in the ith tree which votes for class c. The
overall multi-class decision function of the forest is then defined as

C dð Þ ¼ argmax
c∈C

p cjdð Þ: ð12Þ

3. Integration of orientation estimation and tracking

In the normal situation, the possibility that the person body orienta-
tionwill be the samewith itsmovements increases alongwith its speed.
Based on this observation, our orientation estimation system is built
using an assumption that the human body orientation is aligned with
the direction of the human movements. In this case, we utilize both
the result of the orientation detections and that of human movement

Unlabelled image
Unlabelled image
image of Fig.�3


Fig. 4. Extracting features using BIFM-PLS.
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estimation. On the opposite, we only rely on the orientation information
from detections when the human movements are slow or even in a
static condition.

To handle thosematters, we predict themovement of persons in the
world coordinate. We then use the UKF framework to combine the ori-
entation estimation from the detection results and the movement pre-
dictions. The idea of coupling the detection result and the person
movement is also used by [5], but at least three (3) things distinct our
works from the [5]; the baseline (upper body vs whole body), features
(HOG–LBP–PLS vs Sparse-HOG), and the framework (UKF vs particle
filter).

3.1. Estimating human movement through its position in the real world

We derive movement of the persons from the change of their
positions. We follow thework of [9] and [10] for projecting the position
of each detected person from the 2D image coordinate to the 3D world
coordinate. Let us consider a pinhole camera model, with the following
parameters: focal length fc, camera height yc, horizontal center point μc,
and horizon position ν0. According to [10], the projection to the world
coordinate is given by

Wd ¼

yc μd−μcð Þ
νd−ν0
f cyc

νd−ν0
hdyc

νd−ν0

2
6666664

3
7777775
; ð13Þ

where (μd, νd) is the bottom center point of the extended bounding
box,2 andhd is the height of each detected person d in the 2D image.
2 The extended bounding box is calculated by scaling the height of the bounding box to
that of the human body, so that the bottom center is on the ground plane.
Vector Wd = [xdworld, ydworld, hdworld]T denotes the position (xdworld, ydworld)
in the real world relative to the camera position and the height hdworld

of the detected person d in the image.
The horizon position v0 is obtained by collecting line segments in the

image using Hough line detector and running RANSAC to evaluate all
segments and get the intersection. This horizon estimation is done off-
line3 and we use it as a pre-calibrated value for the on-line tracking.
For each frame, we send the position (xdworld, ydworld) to the tracker for
getting the movement estimation in the real world.

3.2. Tracking strategies

3.2.1. State and observation models
Our state model is decomposed from the person position (xk, yk), its

derivative (ẋk; ẏk), and the orientation components (φk
M, φk

D, θk) where
φk
M and φk

D respectively denote the person orientation due to the move-
ment and the detection estimation and θk denotes the final orientation
of the person after considering the movement and the detection result,
as stated by following tuple, F Xð Þ ¼ xk; yk; ẋk; ẏk;φM

k ;φ
D
k ; θk

� �
. A con-

stant velocity model is used for representing the person position and
its derivative, as follows

xk ¼ xk−1 þẋk−1δt þ ϵx;
yk ¼ yk−1 þẏk−1δt þ ϵy;
ẋk ¼ ẋk−1 þ ϵẋ;
ẏk ¼ẏk−1 þ ϵẏ;

8>><
>>:

ð14Þ

where ϵx; ϵy; ϵẋ; ϵẏ
n o

are the gaussian noises for each component, and δt
is the time sampling.
3 To keep the speed of algorithm, we compute and use the horizon estimate as a con-
stant. We assume the camera tilt is small (or in other words, the ground plane where
the robot runs is flat).

image of Fig.�4


4 In the upper body bounding box, the lower third part usually contains the human
shoulder and body. We can expect that the cloth color can be retrieved from this region
and does not change much during the tracking process.
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The orientation components of F Xð Þ are then described as

φM
k ¼ arctan

ẏk−1

ẋk−1

� 	
þ ϵφM

υk−1ð Þ;

φD
k ¼ φD

k−1 þ ϵφD
;

θk ¼ φD
k−1 þ

ω 1−e−υk−1

 �
1þ e−υk−1

φM
k−1−φD

k−1

� �
þ ϵθ;

8>>>>><
>>>>>:

ð15Þ

where ϵφD
; ϵθ

n o
are the gaussian noises and ω is a constant.

The noise function ϵφM
υk−1ð Þ in the first line of Eq. (15) is defined as

ϵφM
υk−1ð Þ ¼ N 0; g υk−1ð Þð Þ;

g υk−1ð Þ ¼ συexp
−υk−1 ;

υk−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẋ2k−1 þẏ2k−1

q
;

ð16Þ

where υk − 1 is the magnitude of the person movement, and συ is a
constant. Using Eq. (16), the noise function ϵφM

υk−1ð Þ can be read as a
zero-mean gaussian of which the variance varies w.r.t the person
movement υ.

Eq. (15) suggests the influence of the person movement to the ori-
entation estimation. This equation, together with Eq. (16), tells us that
when the velocity of a person is small enough (υk − 1 ≈ 0), the uncer-
tainty of the movement orientation becomes large (see ϵφM

υk−1ð Þ),
and the orientation estimation will mainly depend on φk

D (which is
updated using the orientation detection result in the observation
model (see Eq. (17))). On the contrary, when the velocity is large
then the movement orientation becomes more reliable and the ori-
entation estimation depends on both detection and the person
movement.

Here the constant ω has a duty for controlling the influence of the
detection and the person movement to the overall orientation. The
value ofω is later investigated in the experimental section (Section 4.5).

We then use the observation model for the person position in the
world coordinate (derived from Eq. (13)) and for the person orientation
from the result of Section 2, as follows

H Xð Þ ¼

μk ¼
xk

f cyc
yk

� �
yc

þ μc þ ϵμ

νk ¼ f cyc
yk

þ ν0 þ ϵν

hk ¼
f cyc
yk
hd
yc

þ ϵh

Ck ¼ f C dð Þ;φD
k

� �
þ ϵc

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

where (xk, yk) denote the person position, (fc, yc, μc, ν0) are the camera
parameters (focal length fc, camera height yc, horizontal center point
μc, and horizon position ν0), and {ϵμ, ϵν, ϵh, ϵc} are the gaussian noises
for each observation component. μk, νk, and hk have the same definition
with μd, νd, and hd in Section 3.1. The function f(C(d), φk

D) maps the
result of the multi-class decision function C(d) (Eq. (12)) into their
equivalent angle of the orientation φk

D.

3.2.2. Unscented Kalman Filter tracker
For choosing the tracker, we consider our hardware limitation

and the system nonlinearities. Several well-known filters can be
adopted for handling the nonlinearities, such as Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), and particle filter.
Here we choose UKF because we want to avoid the resource costs
of the particle filter (used by [5]) and the calculus of the Jacobianma-
trices used in the EKF.

TheUKF [20] employs theunscented transform, a deterministic sam-
pling technique, to take a minimal set of sample points called sigma
points around the mean. Consider the current state with the mean x̂
and its covariance Px. We build a set of 2 L + 1 sigma points matrix X ,
as follows

X0 ¼ x

X i;k−1 ¼ x̂þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ λð ÞPx

p� �
i
; i ¼ 1;…; Lf g

X i;k−1 ¼ x̂−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ λð ÞPx

p� �
i−L

; i ¼ Lþ 1;…;2Lf g
λ ¼ α2 Lþ κð Þ−L;

ð18Þ

where L is the dimension of the augmented state, α and κ are constants
for controlling the spread of the sigma points.

We then define W(m) and W(c) as the weight for the mean and
covariance respectively, given by

W mð Þ
0 ¼ λ

Lþ λð Þ
W cð Þ

0 ¼ λ
Lþ λð Þ þ 1−α2 þ β

� �

W mð Þ
i ¼ W cð Þ

i ¼ 1
2 Lþ λð Þ ; i ¼ 1;…;2Lf g

ð19Þ

where β integrates prior knowledge of the distribution of x̂. We use the
default value, α = 10−3, β = 2, and κ = 0.

We compute mean and covariance of the prior estimation (Xkjk−1

and Pk
−) using the state model F Xð Þ in Eqs. (14) and (15), and the

sigma points above as follows

X i;kjk−1 ¼ F X i;k−1

� �
; i ¼ 1;…;2Lf g

x̂−k ¼
X2L
i¼0

W mð Þ
i X i;kjk−1

P−
k ¼

X2L
i¼0

W cð Þ
i X i;kjk−1−x̂−k
h i

X i;kjk−1−x̂−k
h iT þ Q

ð20Þ

where Q is the covariance of the process noises.
In the measurement update phase, we project the sigma points

through the observation function H(X)

Zi;kjk−1 ¼ H Xi;kjk−1

� �
; i ¼ 1;…;2Lf g

ẑ−k ¼
X2L
i¼0

W mð Þ
i Zi;kjk−1;

Pzkzk
¼

X2L
i¼0

W cð Þ
i Zi;kjk−1−ẑ−k
h i

Zi;kjk−1−ẑ−k
h iT þ R;

ð21Þ

where ẑ−k denotes the predictedmeasurement,Pzkzk
is its covariance, and

R is the covariance of the observation noises. The state measurement
cross-covariance Pxkzk

and the Kalman gain K are computed as

Pxkzk
¼

X2L
i¼0

W cð Þ
i Xi;kjk−1−x̂−k
h i

Ζi;kjk−1−ẑ−k
h iT

;

K ¼ Pxkzk
P−1
zkzk

:

ð22Þ

The mean and covariance of the posterior estimation are then
calculated as

x̂k ¼ x̂−k þ K zk−ẑ−kð Þ;
Pk ¼ P−

k −KPzkzk
KT

:
ð23Þ

We also give to the tracker, the color histogram information Htr re-
trieved from the lower third of the bounding box, fromwhichwe expect
to get clothing features.4 In the implementation using a moving robot



Fig. 5. Region of Interest (ROI) for tracking. The red transparent shadows are places which
has a high probability that person may appear to the scene from the side. The green
transparent shadow is the ROI of the tracker. The blue cylinder denotes the current tracker
bounding box. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

5 Basically, this heuristicmethod is enough for our cases. Formore general scenarios,we
open this problem to the interested reader.

6 This generic naming is for simplicity only, not intended to give a new name to the
existing databases.

7 Camera calibration data of the TUD-Stadtmitte dataset is provided at http://
www.gris.informatik.tu-darmstadt.de/~aandriye/data.html.
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(see Section 4.7), the camera movement is currently compensated by
using the odometry of the robot. The use of Kanade–Lucas–Tomasi
(KLT) features tracker [10] or the visual odometry [11] for compensating
the camera movement are further investigated in the future.

3.2.3. Association
We treat each detection of the human upper body as an observation,

to be associated with the trackers. For every observation, we use the
position and histogram information for calculating the relative distance
to each tracker Δob,tr, given by

ΔP
ob;tr ¼

e
−1

2 μob−μ tr


 �T
X
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þ
X

tr
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Δob;tr ¼ ηΔP
ob;tr þ ςΔH

ob;tr ð26Þ

where Δob,tr
P is the gaussian correlation between mean and covari-

ance of the observed position μob;∑obð Þ and the tracker position
μ tr ;∑trð Þ. Δob,tr

H is the color histogram correlation distance of the
observation Hob and the tracker Htr, and η and ς are constants.

Under the nearest neighbor assumption, each observation is
assigned to the tracker when the distance Δob,tr is below the threshold.
A new tracker is born from the observation which has no association,
and any track which is not associated with any observation and has a
large uncertainty is then deleted.

3.2.4. ROI-based tracking
For reducing the calculation time, we do a hierarchical Region of

Interest (ROI)-based tracking (including the orientation estimation)
along the frame sequences. First, we search the whole space of the
image to obtain initial observations and trackers. The next sequences
utilize the position information from the trackers as the ROI. We do
the detection around the ROI and in the area where persons may
come up to the scene (see Fig. 5). This technique5 considerably reduces
the time for detection. Lastly, every 15 frames, we do the whole space
search to anticipate the missing detection.

4. Experiments

Size of all images and camera sequences used in our experiments is
640 × 480. All of experiments were done using C++ implementation
on a laptop PC (Core2Duo 2.1 GHz, 2 GB memory, andWindows 7 OS).

The evaluation of our method starts from explaining the dataset
used by our system. We then build an analysis to support the
advantages of using our method for the human orientation estimation,
by comparing it with several methods. We also evaluate performance
of the orientation estimation and tracking integration. Lastly, we
implement our system to the real environment using a camera attached
on a mobile robot.

4.1. Dataset

First, we create our upper body dataset by cropping the INRIA [1]
and Fudan-Penn [6] data into 48 × 64 pixel images containing the
upper-half body of persons.We also add the CALVIN upper body dataset
[7] into our dataset, so thatwe have 4250 positive samples of thehuman
upper body. Around 3000 positive samples are used for training the
upper body detector, and the rest is for testing purpose. 2500 negative
samples are created from images which do not contain the human
upper body, including the bottom part of the human body. From now,
we refer it as dataset A.6

To do a comprehensive test of the humanupper body orientation es-
timation,we use several datasets for both static anddynamic scenes. For
the static scenes, we use TUD-Multiview dataset [3] which is also used
by the other state-of-the-art papers ([5,21]). This dataset consists of
1486 images for training, 248 images for validation, and 248 images
for testing. The TUD-Multiview dataset is annotated with bounding
boxes of full body and eight orientation classes. For our purpose, we
change the bounding boxes into the half upper part of the body.

We also use the dataset created for upper body training (dataset A),
for the orientation classification purpose.We then separate the training
samples of the above dataset into eight classes representing the eight
orientation of the human body (see Fig. 1). The testing samples are
treated in the same manner with the training samples. This dataset is
then called as dataset B.

For the dynamic scenes, we use TUD-Stadtmitte dataset [3] which
contains 200 frames of the street scenes with several pedestrians
crossing the street with a complex environment and many occlusions,
and the camera calibration data.7 Here we use the raw video for the
TUD-Stadtmitte dataset without annotations.

We then take an indoor video of our laboratory (from here, it is
referred as InLab dataset). This video contains 487 frames with the
number of persons varies from zero to three persons on each frame,
and also the camera calibration data.

We summarize the usage of each dataset, as follows:

• Dataset A is used for training and testing the human upper body
detection;

• Dataset B is used for evaluating the orientation estimation under
various features and classifiers (see Sections 4.3 and 4.4);

• TUD-Multiview dataset is used for comparison with the state-of-the-
arts (see Section 4.6);

image of Fig.�5


Fig. 6. Performance of the human full body and upper body detection. The left graph shows the result on the dataset with no occlusion. The right graph shows the result on the occluded
dataset.
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• Combination of subset B andTUD-Multiviewdatasets are then used for
training the orientation model to be used in the dynamic scenes, i.e.
TUD-Stadtmitte and InLab datasets (see Section 4.5), and the real
world application (see Section 4.7).
4.2. Human upper body detection performance

At the beginning, we want to show the reason for choosing the
human upper body over the full body detection in our system. We
build the human full body dataset from a subset of the INRIA dataset
[1], and for the upper body dataset, we use the dataset A mentioned
in Section 4.1. We then create two testing samples; the first samples
contain a subset of testing samples of the INRIA which do not contain
occluded person, and in the second ones we add several images with
persons occluded by the chairs, tables, and furniture in additional to
the testing samples of the INRIA. The training of both cases is then
performed using Boost-Cascade method, as mentioned in
Section 2.2. The ROC of both occluded and non-occluded cases are
shown in Fig. 6.

The results show that the human upper body detector works better
on the occluded dataset. This result suggests the use of the human
upper body detection on the real cases such as an indoor environment
with many tables, chairs, and furniture, rather than using the full body
model.
Table 1
Evaluation of the orientation estimation using various features and classifiers.

Feature Classifier Accuracy

TUD-Multiview Dataset B

HOG MultiSVM 0.35 0.34
HOG MultiBoost 0.37 0.38
HOG Random forest 0.44 0.46
HOG + LBP MultiSVM 0.45 0.43
HOG + LBP MultiBoost 0.48 0.45
HOG + LBP Random forest 0.53 0.52
HOG + LBP + CFM-PLS MultiSVM 0.45 0.42
HOG + LBP + CFM-PLS MultiBoost 0.50 0.47
HOG + LBP + CFM-PLS Random forest 0.54 0.54
HOG + LBP + BIFM-PLS MultiSVM 0.60 0.57
HOG + LBP + BIFM-PLS MultiBoost 0.60 0.58
HOG + LBP + BIFM-PLS Random forest 0.64 0.60
4.3. Evaluation of the orientation estimation using various features and
classifiers

First, we conduct experiments to see the influence of the features,
the models, and the classifiers to the orientation estimation results by
using the dataset B. Following parameters are used for the experiments;
we use themulti-level HOG and LBP features explained in the beginning
of this paper; for the multi-class SVM classifier [13], we use a standard
RBF kernel with gamma set to 4e-4, and regularization parameter is
set to 1.0; for the MultiBoost [14], we use “FilterBoost” for the strong
learner and “SingleStump” for the base learner; for the Random Forest,
the number of trees is set to 100 and the maximum depth of trees is
set to 25; the latent vector for CFM-PLS is set to 15, and for the BIFM-PLS,
we set p1 to 3 and p2 to 15 (we will discuss these values of the PLS
models in the next subsection).

Table 1 shows the experimental result using the combination of fea-
tures and classifiers. Based on this table, the combination of multi-level
HOG-LBP features, BIFM-PLS model, and Random Forest classifier, is
Fig. 7. Confusion matrix on TUD-Multiview dataset using BIFM-PLS and random forest.
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Fig. 8. The block importance of each feature using theweight of the first projection vector. The left figure shows the importance of one level block due to the HOG features. The right figure
shows the importance of one level block due to the LBP features. Red color represents the high importance. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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superior against the others. In general, the combination of HOG and LBP
features is better than using only HOG features. The RF classifier also
gives better impact than using MultiSVM and MultiBoost. The
interesting part is that the usage of PLS models yields better result of
the orientation estimation than the concatenated features. We will
discuss these matters in the next subsection.

Fig. 7 shows the distribution of the orientation estimation. From this
figure, we can conclude that estimating an oblique direction is more
difficult than detecting the perpendicular one.
4.4. Analysis of the PLS models

We now discuss about how our PLS models (BIFM-PLS) give a
significant contribution to the orientation estimation. We extract the
block importance score (BIS) of each LBP and HOG features using the
BIFM-PLS algorithm, and draw the weight of the first projection vector.

Fig. 8 shows the contribution of each features to the orientation
estimation. The left figure, which utilizes the HOG features, shows that
the areas around the edges of the body have a high importance, and
the background tends to have a low importance. It means that the
HOG extracts the shape of the body for the orientation estimation. In
the right figure, we can see that the high importance area is around
the head area and the body, but not for the background and the clothing.
Here we can understand that the LBP captures the head features for the
orientation estimation, while the clothing and background which vary
from one sample to the others are discarded.

Based on Fig. 8, and supported by the results in Table 1, we show the
effect of theBIFM-PLSmodel to the classification. Even the classifier such
as the Random Forest is noted to be able to extract the importance of the
features (for example, in [22]), here the BIFM-PLS removes the “noisy”
areas (such as the various background and clothing) as shown in
Fig. 8, and helps the classifier focus to do the classification on the high
importance features.
Table 2
Performance of PLS and PCA for the orientation estimation.

Method Accuracy

TUD Multiview Dataset B

HOG + LBP + CFM-PLS + RF 0.54 0.54
HOG + LBP + BIFM-PLS + RF 0.64 0.60
HOG + LBP + PCA + RF 0.52 0.51
We can also see the advantages of the PLS models as a dimensional
reduction algorithm. We use another popular dimensional reduction
algorithm, Principal Component Analysis (PCA), as the baseline.
Table 2 shows the superiority of the PLSmodels against the PCA. It is un-
derstandable because unlike the PCA, the PLS also considers the class la-
bels besides the variance of the samples.

We then discuss about the effect of the constants p1 and p2 used in
the BIFM-PLS algorithm, shown in Fig. 9. p1 represents how well a
block contributes to the orientation estimation, and p2 examines the
contribution of a feature inside a block. By examining Fig. 9, we choose
the optimal value for both constants, p1 = 3 and p2 = 15. Over those
values, we can consider it as the data overfit.
4.5. Evaluation on integrated orientation estimation and tracking
performances

The next experiments are intended for evaluating the performance
of the integrated orientation estimation and tracking. Here we use the
TUD-Stadtmitte and InLab datasets for the evaluations. We also investi-
gate the influence of choosing various values of ω as mentioned in
Eq. (15). The higher value of ω means that the object movement will
give a higher influence to the orientation estimation result.
Fig. 9. The effect of varying p1 and p2 value of the BIFM-PLS to the orientation estimation
results.
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Fig. 10. Human upper body orientation estimation results on TUD-Stadtmitte datasets using our proposed framework. Top sequence shows the detection (bounding boxes) and orienta-
tion estimation (arrows) results. Bottom sequence shows the estimatedposition of each detected person (circles) in the 3Dworld coordinate,with respect to the person position in the top
images. Two orange line segments in the bottom sequences denote the camera FOV. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 10 shows the performance of our proposed system using the
TUD-Stadtmitte dataset. The top sequence shows the orientation
detections and tracking results. The bottom sequence shows the person
locations and movement predictions in the 3D world coordinate,
relative to the position and FOV of the camera.

We then test our framework on InLab dataset, as shown in Fig. 11
(please refer to Fig. 10 for figure property explanation). Fig. 11 exhibits
the robustness of the multi target tracking and orientation estimation
under many occlusions.

Fig. 12 shows the effect of changingω value to the overall orientation
estimation results. We change the value of ω from 0, which means that
the orientation estimation depends only on the detection, to ω = 1
which represents a heavy dependency to the object movements.

In the TUD-Stadtmitte dataset, the orientation estimation based on
the object movements (ω = 1) is relatively high compared to the one
based on the detection (ω = 0), due to the consistent movement of
each person inside the video sequences, which gives a high confidence
to the movement estimation. Contrary, the orientation estimation
based on the object movement in the InLab dataset is lower because
the persons frequently change their direction. Overall, combining both
detection andmovement estimation tends tomake a higher orientation
estimation results rather than solely depends on the detection or the
movement estimation, and in our cases we choose ω = 0.5.
Fig. 11. Human upper body orientation estimation results in an indoor environment. Top sequ
Bottom sequence shows the position of estimated each detected person (circles) and the grou
the top images. Two orange line segments in the bottom sequences denote the camera FOV. (
the web version of this article.)
4.6. Comparison with the state-of-the-art

Wecompare our algorithm to the state-of-the-art papers such as [3,5],
and [22] using the TUD-Multiview dataset. Since the state-of-the-art
papers use the whole body information for estimating the orientation,
we cannot directly use the result of their papers as the comparison. In-
stead, we need to test their methods using the upper body information.
Unfortunately, the authors of those papers do not provide any imple-
mentation code.

To overcome the problem above, we re-implement their algo-
rithms based on our understanding to their papers. We then evaluate
it using the full body information. We expect that the result will be
similar with the one mentioned in their respective paper. The first
and second columns of Table 3 show the comparison of the original
and the re-implemented version of the state-of-the-art papers. We
can see that our re-implementation gives a close result to the one
mentioned in each paper. Until this stage, our algorithm beats all of
Andriluka's and Chen's works and comparable to Baltieri's work,
even though they use the full body information. Nowwe can assume
that our re-implementation of the state-of-the-art can be used for
further comparison.

We then use the re-implementation of the state-of-the-art for
making a fair comparison with our algorithm, i.e. by applying the
ence shows the detection (bounding boxes) and orientation estimation (arrows) results.
nd truth (rectangles) in the 3D world coordinate, with respect to the person position in
For interpretation of the references to color in this figure legend, the reader is referred to
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Fig. 12. The effect of varying ω value to the integration of orientation results.

Table 3
Comparison of the state-of-the-art algorithms.

Method Accuracy full body Accuracy

Paper Our implementation Upper body

Andriluka [3] — Max 0.31 0.29 0.20
Andriluka [3] — SVM 0.42 0.39 0.35
Andriluka [3] — SVM_adj 0.35 0.33 0.27
Chen [5] — Sparse 0.55 0.52 0.40
Baltieri [21] — AWG 0.65 0.59 0.51
Ours N/A N/A 0.64
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same upper body dataset which contains less information. Each
algorithm is then trained and tested using the upper body version of
the TUD-Multiview dataset. The last column of Table 3 shows the result
of each algorithm using only the upper body information. The result of
each state-of-the-art degrades significantly, as less information is avail-
able for obtaining the body orientation. It also shows the importance of
using various cues. Other works use only the shape features which
decrease the performance when the information becomes less. On the
other hand, our algorithm uses the shape and texture features simulta-
neously to overcome those problems and gains the best performance on
the upper body orientation estimation.
Fig. 13. Human upper body orientation estimation
4.7. Orientation estimation on moving camera

In this experiment, we attach a monocular camera on the mobile
robot base. The robot is then controlled to move while performing the
human upper body orientation estimation and tracking in real-time.
The experiment was performed at the university cafeteria, with the
total of 190 frames. Fig. 13 shows the experimental results using the
camera with a moving base. We can achieve the accuracy rate of 0.70
and the frame rate of 5–12 Hz, fast enough to be used for an on-line
purpose. Once again, it shows the consistency and robustness of our
orientation estimation and tracking system.
5. Conclusions

Wehave described a framework of orientation estimation and track-
ing. Our human upper body orientation classification system, utilizing a
partial least squares model-based shape-texture features combined
with the random forest, is proved to work better than any existing
methods. Its integration with the tracking system boosts up the perfor-
mance of the orientation estimation even further. Another notable re-
sult is that our system works real-time, giving a possibility to be used
in the real robot application such as the person tracking.

Future work for our system, besides the implementation on a real
robot for specific purposes, is to combine it with other sensors such as
laser range finders. By adopting multi-sensory fusion, we expect to
build a more robust system for person localization. There are also possi-
bilities for choosing and adding better heuristics in the integration of
orientation estimation and tracking, such as a better way for selecting
the ROI, so that the systemwill be applicable formore general scenarios.
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