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HIGHLIGHTS

A multi-feature person identification method for mobile robots is proposed.
The method adopts gait, height, and color features for robust identification.
It is applicable to severe illumination conditions.

Gait and height estimation methods for mobile robots are proposed.
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such as a strong backlight. Therefore, we use two illumination-independent features, height and gait, in
addition to appearance features for a more robust identification. To this end, we have developed a new
method of extracting the gait feature (step length and speed), based on a maximum likelihood estimation
of supporting leg positions in accumulated range data. We combine these features and use an online
boosting approach to create the specific person classifier. It allows the robot to identify the specific person
robustly even in a severe illumination environment. We tested our multi-feature person identification
method, combined with a range data-based person tracker, in a specific person following scenario to
demonstrate the effectiveness of this method.
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1. Introduction person tracking function has been widely studied in many
published works. Especially for mobile robots, laser range finders
There is an increasing demand for service robots which can (LRFs) are often used for person detection and tracking thanks to
attend and support a person. Such robots are expected to provide  their reliability and wide field of view [1-3]. These works detect
services, such as guiding, guarding and elderly care. Person  persons from range data and track the persons based on their
following is a necessary function of personal service robots, in ~ Dositions. However, if a person is occluded by other persons for
order to provide such services to a specific person. Fig. 1 shows an several seconds, the robot may lose track of the target person
example of following behavior. To follow a person, the robot hasto ~ OF track another person erroneously. It is, therefore, necessary to
be able to continuously identify the person, and the identification  identify a specific person from only the sensory features obtained
function has to be robust and usable in both indoor and outdoor ~ for a frame or a short period.

environments since persons move across these environments in . lmage—baseq trackmg methods (e.g., .[4’5]) have an gdvantage
their daily life. in that various information for identification can be obtained while

One way is identification by tracking, that is, to track a person tracking. Possible types of information include color of clothing [6],

over time and identify him/her based on motion continuity. The height [7], face 8], gait [9,10], and skele_tal‘ information [”]' .
Many appearance features are used in image-based identifica-

tion, for example HSV, Lab and XYZ color space histogram [12,13],

Haar-like [14], HOG [15], LBP [15] and SIFT [16] features. Those

* Corresponding author. features are, however, not applicable to severe illumination envi-
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Fig. 1. Person following robot.

edges are not reliably obtained. It is therefore necessary to com-
bine other features, including those from other sensors, for more
robust identification.

Person re-identification has been extensively studied in com-
puter vision domain [17-21]. In these works multiple non-
overlapping cameras are put in an environment, and persons are
tracked and identified across the cameras for surveillance. Recent
person re-identification methods use novel identification proce-
dures, such as automatic discriminative video fragments selection
[19]. These methods significantly improve identification perfor-
mance under observation noise and illumination changes among
cameras. However, it is difficult to apply these methods to mo-
bile robots directly for the following two reasons. First, as a robot
moves, the background changes and often becomes very compli-
cated. This makes it difficult to obtain an accurate foreground mask
for each person and eliminate effects from the background. Sec-
ondly, most of person re-identification methods rely on appear-
ance features. In the case of mobile robots, since cameras are put
atalower height than in surveillance systems, lights or the sun may
easily come into sight (see Fig. 2, for example), and mobile robots
may face extremely severe illumination environments where ap-
pearance features are significantly degraded.

Person identification using gait analysis has recently become
popular [9,10,22]. These works extract and use frequency compo-
nents from silhouette images of a walking person for identification.
Since they also assume a static background, these methods cannot
be directly applied to mobile robots. Little has been proposed for
gait analysis using range data [23-25]. Cifuentes et al. [23] mea-
sured the gait features, such as leg distance and leg orientation,
from a mobile robot to realize a smooth human-robot interaction.
The relative position between the robot and the person is, how-
ever, very limited for avoiding that legs are occluded by the oppo-
site leg. Nakamura et al. [24] and Song et al. [25] put several LRFs
on the ground and extracted the gait feature from these data. Since

a mobile robot has a single viewpoint, a leg is often occluded by the
other leg; the measured gait may be degraded due to this occlusion.

Height features are used for well calibrated and fixed cam-
eras [7]. Since the height of a person is fixed and specific to the
person, it is suitable for person identification. In the case of mobile
robots, however, it is difficult to measure the height of a person us-
ing only one camera because the distance to the person can change
largely. In order to use the height feature for mobile robots, another
sensor which provides the distance is necessary.

Devices for identification, such as radio frequency identifier
(RFID) tags [26,27] or inertial measurement units (IMUs) [28], are
sometimes used by a robot to locate a target person who has the
devices. Although using such devices makes target localization
easier, it requires users to wear the devices every time when they
require services, and this may be inconvenient to the users.

In this paper, we propose a method of robustly identifying
a specific person using LRFs and cameras. In order to ensure
the redundancy of features in identification, we introduce two
illumination-independent features, height and gait, in addition to
appearance features. We combine these features to realize a robust
person identification even in severe illumination environments.
We validate by experiments that these two features greatly
increase the identification robustness. The contributions of this
paper are threefold. First, we provide a person identification
method which adopts gait and height features as well as color
features for a robust identification. Secondly, we propose a gait
estimation method using LRF. The method extends Nakamura’s
method [24] so that occlusion between legs is explicitly considered
in a maximum likelihood estimation. Thirdly, we propose a
new joint feature approach for combining multiple features with
different observation cycles.

Fig. 3 shows an overview of the proposed system. The robot
is equipped with two-layered laser range finders (Hokuyo UTM-
30LX) set at a torso and a leg height and web cameras, and the
maximum speed of the robot is about 1.2 (m/s). The method first
uses range data from LRF for tracking persons, and then identifies
a specific person. The color feature is extracted from images while
the gait feature is extracted from range data. The height feature
is obtained by combining images and range data. The proposed
method combines these features in order to identify the person in
any environmental conditions.

The rest of the paper is organized as follows. Section 2 briefly
explains a person detection and tracking method using LRF data.
Section 3 describes an overview of our person identification frame-
work using multiple features. Section 4 describes person identi-
fication using color and height features. Section 5 describes gait
extraction and its application to person identification. Section 6
describes evaluation of the proposed person identification method.
Section 7 describes a person following strategy and experimental
results. Section 8 concludes the paper and discusses future work.

(a) Outdoor.

(b) Indoor.

Fig. 2. Extremely severe illumination environments which mobile robots may face.
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Fig. 3. Person tracking and identification system.
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Fig. 4. Torso and leg detection procedure.

2. Person tracking

2.1. LRF-based person tracking

Multiple layered LRFs are sometimes used for human detec-
tion [29]. Typically these sensors are put at the height of torsos
and legs, and then both detection results are combined. They as-
sume that the torso of a person is always detected, and if one or
two legs are found under a torso, the torso is judged as a true pos-
itive. By combining detection results of multiple layered LRFs, we
can reduce the number of false positives.

Torsos and legs are typically detected as a segment separated
from background by finding gaps in range data [1,3]. However, in
populated environments, torsos and legs are not always separated
from background or another torso/leg. They are also often partially
occluded by another objects. Our method first detects gaps of
range data for clustering (see Fig. 4(a)), and then finds break points
of merged torsos/legs in range data using two threshold values
Aw and Ad (see Fig. 4(b)). For a point in a cluster, if two points
separated from the point by Aw on both sides are closer by Ad to
the robot than the point, the point is treated as a break point, and
the cluster is split at that point. We then apply a size filtering to all
the clusters to detect torso/leg candidates. Fig. 5 shows examples
of detected candidates for torso.

The detected candidates are classified into torso/leg and other
objects using Arras’ method [2] and Zainudin’s method [3],
respectively. Features which represent the shape of the clusters
are extracted, and then the classification is performed by machine
learning method, such as SVM [30] and Adaboost [31].

We adopt a simple procedure for temporal data association of
detected persons, based on a Kalman filter with a constant velocity
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(a) Usual. (b) Partially-occluded.

model and a nearest neighbor (NN) data association. This works
well in the majority of tracking cases. If a person is occluded by
another person for several seconds, however, it often fails to track
the person due to an incorrect data association. We thus take
occlusions of persons into account in data association as follows.

We model each person by a circle located at the position
predicted by the Kalman filter, and test whether it is occluded
or not. We first predict the range data which should be obtained
from the circle, and then the predicted range data for the circle are
compared with the actual observed range data. If more than a half
of the actual range data are closer to the robot than the predicted
range data, the person is considered as occluded. The occluded
persons are not associated with the detected persons to prevent
incorrect data association.

2.2. Detecting person region on the image

A person region on an image is required to extract features for
person identification. We first calculate a Region of Interest (ROI)
from a person position obtained by the LRF-based tracking, and
then detect the upper body of the person from the ROI using the
cascaded HOG classifier [32]. To calculate the ROI, we model the
person as a cylinder located at the person position and project the
cylinder into the image (see Fig. 6). The detected regions are used
for extracting the person features.

3. Person identification framework

In this section, we briefly describe our person identification
framework and a joint feature approach. To identify the person,
we employ the color, the height, and the gait feature as it will be
explained in detail in Sections 4 and 5. Those features are merged
into a joint feature and learned by online boosting [33].

3.1. Person identification using online boosting

Online boosting is one of the online learning methods which
constructs an ensemble of weak classifiers and uses it as a strong
classifier. This method has been used for people tracking due to
its adaptability and real time performance [14,34]. In our case,
each weak classifier uses only one of the three features. Since
online boosting selects the best weak classifiers, only the effective
features are used for person identification. For example, when they
are in a severe illumination environment, the color feature is not
effective and only the height and the gait features are used in the
classifier. As a result, we can obtain a reliable person classifier
even in a severe illumination environment (see experiments in
Section 6).

While the target person is tracked by the LRF-based tracker, the
person classifier is updated with observed features. While the LRF-
based tracker is losing the target, updating of the person classifier
stops and the robot looks for the target person using the latest
person classifier. If a person who is judged as the target person by
the classifier is found, the robot sets the person as the target to
track, and resumes tracking.
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(c) Merged.

Fig. 5. Detected torso candidates. Each green circle indicates the position of a torso candidate.
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Fig. 6. Detecting the person region. The green circles indicate the person position
obtained by the LRF-based tracking. The red transparent regions are the ROI
calculated from the person position. The green transparent regions are the detected
person regions.

3.2. Joint feature for online boosting

The observation cycles of the proposed features are largely
different. To apply the features to online boosting, they have to
be synchronized and merged into a single joint feature. There are
basically two approaches to synchronize features: synchronizing
features to the one with the shortest or the longest cycle.

If we take the first approach, while the feature with the shortest
cycle is varying, features with long cycles are kept constant or
interpolated. Weak classifiers using those with long cycles are
updated by one observation until a new observation is obtained.
It may cause an overfitting. We thus take the second approach.

In a traditional way for the second approach, every time the
feature with the longest cycle is obtained, latest feature values
are simply concatenated to construct a feature vector [35]. In our
system, however, the observation cycles of the proposed features
are very different from each other; those of the color and the height
feature are about 30 ms long, while that of the gait feature is about
500 ms long. By using only the latest feature values, a large amount
of observations with short cycles are discarded (see Fig. 7(a)), and
the identification result may be degraded. Therefore, we also make
use of the values of features with shorter cycles obtained during
an interval of the feature with the longest cycle by calculating their
statistics and concatenating them with the feature with the longest
cycle (see Fig. 7(b)).

In this paper, the statistics of two features, the height and
the gait, are calculated. Since the height of a person is fixed,

joint feature
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(a) Traditional joint feature approach. Latest features are

simply concatenated.
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the distribution of the height feature can be expected to be
unimodal. On the other hand, if we observe a person for a while,
the distribution of the color feature may become multimodal due
to illumination changes. However, in our case, the duration for
summarizing the features is about 0.5 [s] (i.e., the observation cycle
of the gait feature). We assume that the duration is small enough to
model the distribution of the color features as unimodal. We thus
employ mean and standard deviation to summarize the features.

4. Image-based person identification

4.1. Color feature

Color features can easily be extracted from an image and are
effective for identifying a person by their clothing color [12,14,34].
Texture and shape features, such as HOG [15] and SIFT [16], are
also used for a more robust person identification. However, all
such appearance features are weak under severe illumination
environments [17]. We thus use only a color feature as an
appearance feature for simplicity.

Color histogram is one of the most popular representations
for color modeling. We use a hue-saturation histogram (HS-
histogram) to reduce the effect of light intensity changes. To obtain
a histogram, we follow Luber’s histogram extraction approach [ 14].
An HS-histogram is constructed from pixels in a rectangular region
with randomized positions and sizes in the person region. By
online boosting [33], histogram extraction regions are sampled
randomly, and regions with better identification rate are used for
constructing an ensemble of classifiers. An example of histogram
extraction regions generated by online boosting is shown in Fig. 8.

4.2. Height feature

The height of a person can be used as another feature for person
identification. Even if there are multiple persons with similar
heights, the height is useful for reducing the number of candidates
for the target person. To calculate the height of a person, we first
determine the topmost position (i.e., sinciput of the head region)
in the image, and then estimate the height using the camera
geometry.

A saturation-intensity histogram of a hair region is computed
from the hair images in advance, and then a Gaussian mixture
model (GMM) is fitted to the histogram. Hair images are collected

joint feature
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feature with
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feature with
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(b) Proposed joint feature approach. Statistics of features with
short cycles are calculated and then combined with the feature
with the longest cycle.

Fig. 7. Comparing joint feature approaches.
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Fig. 8. An example of regions for color histogram extraction selected by online
boosting. The blue rectangles are the regions for hue histogram extraction, and
the green rectangles are the regions for saturation histogram extraction. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

sat.

Fig. 9. Hair color model. The green circles indicate Gaussian distributions. The
Gaussian in the high value region corresponds to bright pixels caused by direct
reflections of light.
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Fig. 10. Hair color model for zero saturation pixels. The blue line indicates the
hair color model and the rest of the lines indicate the Gaussian distributions which
compose the model. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

from about fifty people in various environments, and the total
number of hair images is about two hundred. Since we collected
hair images from Asian people, most of pixels will be the ones
with zero saturation (black or gray pixels). We thus fit a separate
univariate GMM to the intensity distribution of zero saturation
pixels. The resultant GMM is used as the hair color model (see
Figs. 9 and 10). Currently, the hair color model is specialized
for people with black or gray hair. However, the model can be
extended for other people by adding their hair images.

We make two images from an input image, one representing the
similarity of hair color and the other representing the magnitude

Similarity to hair color

Sinciput

—

Magnitude of the gradient

Fig. 11. Sinciput detection procedure.

of the gradient, and calculate the pixel-wise product of the images.
The pixel which has the highest product value is considered as the
sinciput of the person (see Fig. 11).

The sinciput position in the image is combined with the person
position obtained by the LRF-based tracking to calculate the person
height. The relationship between the 3D coordinate relative to the
camera (X, Y, Z) and the projected screen coordinate (u, v) in the
pinhole camera model is given by

u fi 0 ¢ TX
sflv|=10 f ¢o]||Y]|, (1)
1 0 0 1]z

where (fy, f,) is the focal length, and (cy, ¢,) is the center point of
the image. From this equation, we obtain:

. Z(v —cy)
= 7}3 .

The depth Z between the camera and the person is obtained by the
LRF-based tracking, and v is the sinciput height in the image. By
putting these values into Eq. (2), we obtain the persons height.

To reduce the effects of a failure of the sinciput detection, we
apply a robust estimation to the person’s height calculation. We
adopt the M estimation with Tukey’s biweight function [36] to
estimate the person’s height.

Y (2)

5. LRF-based person identification

5.1. Gait feature

In computer vision, gait recognition has been studied widely
[9,10,37]. It is, however, difficult to apply their methods to mobile
robots since they assume a static background to extract silhouette
images of a walking person. By using an RGB-D camera, such as
Kinect, we can separate the person region from the background
region, and then extract gait features [38,39]. However, Stone et al.
reported that the gait analysis using depth images shows a lower
accuracy than those using RGB images [38]. Furthermore, infrared
depth cameras, like Kinect, are not usable in outdoor scenes.

When a person is walking, the legs of the person swing and stop
alternately. The interval when a leg is stopping is referred to as
stance phase, and the interval when a leg is swinging is referred to
as swing phase [40]. During the stance phase, the leg which stops
and supports the body of the person is referred to as a supporting
leg. If we can obtain the supporting leg positions (where the leg
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supporting leg positions

Fig. 12. Accumulated range data of the legs of a walking person. High-density
regions are considered as the over around the supporting legs.

touches the ground), we can calculate gait features, such as a step
length and a stance width, from these positions.

Nakamura et al. [24] proposed a method of detecting the
supporting leg positions from LRF data. They observed the legs
of walking persons by several LRFs from different directions at a
railway station and accumulated range data over time. Since the
supporting leg positions have high accumulated values, they are
extracted by Mean shift method [41]. Fig. 12 shows an example
of accumulation of range data; supporting leg positions can be
found at high-density positions. We basically use their approach
but a difference is that a mobile robot has a single viewpoint for
LRF. This causes occlusion of supporting legs by the other ones,
which may degrade the spotting of supporting leg positions in the
accumulated range data.

We thus develop a method of reliably spotting support leg
positions based on maximum likelihood estimation which takes
such occlusions into account.

LetX = [X1, y1, ..., Xn, Yn] be positions of supporting legs, Y =
[x}, ¥}, ..., X, y,] be their observed positions, and ¥ = [012, e,
o] be the observation variances. The likelihood function L is
defined as:

w1 x —x)> + (v, — yi)*
L= exp [ —— . . 3
11:! 2o} P ( 20} ) 3)
We minimize the following objective function J.
J = —loglL
n n 1
=) log2mo? + ) o [ —x)? + ) —y)?} . (4)
i=1 i=1 i

Since the step length of a person at a stationary walk is
constant [37], we assume that and obtain:

(Kig1 — X)2 4+ Vigr —y)? =const. i=(1,2,...,n—1). (5)
From this equation, we obtain the following constraint function g;:
g = (Kir1 — X)° + Qi1 —¥)° — (i — xi_1)°

—i—yi)t=0 i=(2,3,...,n—2,n—1). (6)

According to the method of Lagrange multiplier, we define the
following function.

n—1
F=]-) g (7)
i=2
Then we find a set of leg positions which satisfies the following
equations:
JoF
— =0
BX,‘

JoF oF
-0 oo )
i 0A

P
Low Reliability

Robot
Pt

High Reliability
pl-2
I

Fig. 13. Assigning reliabilities to the measurement of supporting legs.

The partial differentiations of F are introduced as following
equations. Note that A; = 0 fori < 0.

oF 1
— = ——— & —x) — 24(Xip1 — X;)
8X,’ T O;

+ 201 i1 — Xi—1) — 2hi2 (X — Xi—1) 9)
oF 1,
— = ———= Ui = ¥) = 241 — ¥)
8y,- T O;

+2Xi—1 Vg1 — Yie1) — 282 (Vi — Yi-1) (10)
oF
87)”- = Xi4o — 2Xi1(Xig2 — Xi)

— X Vi — 21 Wiz — ¥ — Vi (11)

We use five walking steps for estimation of supporting leg
positions and the duration of the observation is about 2.5 [s]. We
assume that the walking speed is constant for this duration.

When the robot observes a walk from a side position, a leg
on the robot side is always visible while the other is sometimes
occluded. We thus give the observation of the supporting leg on
the robot side a small variance (i.e., high reliability) and that of the
other leg a large variance (low reliability).

Fig. 13 shows how to determine the side of a supporting leg. We
draw a line every two positions and see if the point between them
is on the same side as the robot. In the case of the figure, p;_ is
given a small variance while p; a large variance.

We use the pair of step length and walking speed as the gait
feature since those are determined by physical characteristics of
the person (e.g. weight, height, and lengths of limbs) and specific
to an individual [37].

5.2. Gait estimation evaluation

We describe an evaluation of our gait estimation method. We
placed markers evenly on the ground every 0.6 m and a person
walked by stepping at every marker so that we could obtain a
constant step length. The robot observed the walk both from the
front and the side of the person for comparison.

When the robot observes the person from the side (see
Fig. 14(a)), the measured step lengths fluctuate due to the occlusion
of the supporting leg. The effect of occlusion is then largely reduced
by the proposed estimation method. On the other hand, when the
robot observes from the front (see Fig. 14(b)), the measured step
length is much more stable since no occlusions occur.

Table 1 summarizes the evaluation. The fluctuation of the
observation from the side is larger than the observation from the
front obviously due to the occlusion. The proposed estimation
could reduce the fluctuation in the both cases.
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Table 1
Step length estimation result.

No. of data w/estimation wj/o estimation
mean (m) SD (m) mean (m) SD (m)
Observation from side 42 0.6006 0.01387 0.5988 0.06469
Observation from front 32 0.6078 0.00862 0.6049 0.0114

Table 2
Gait-based identification results.

™= A | B | ¢ [D[E|F[G][H]
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(a) Estimation from observation from side of a person. (b) Estimation from observation from front of a person.

Fig. 14. Estimated step length.
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Fig. 15. Observed gait data.

5.3. Gait identification experiment data for training; we can see some persons (e.g., persons C, E, and

H) have distinctive gaits.

A gait identification experiment was conducted. We recorded
gait data of about 30 steps long (about 20 s long) for eight persons
at a normal walking speed as a training set and constructed
a classifier for each person using online boosting [33]. In the
experiments, the number of weak classifier selectors is five and
each selector contains ten weak classifiers. Fig. 15 shows the gait

We recorded another set of data in the same settings for
evaluating the identification performance. Table 2 shows the result
of the experiment. The first row indicates the constructed models,
and the first column indicates the test data. Each cell indicates
the acceptance rate of the test data by the constructed model. For
models C and D, the correct person shows a higher identification
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(a) Experiment 1. Persons with the
similar heights and the different color

clothes. clothes.

(b) Experiment 2. Persons with the
different heights and the similar color

(c) Experiment 3. Persons with the
different heights and the different color
clothes.

Fig. 16. The environments of the person identification experiment.

(a) Experiment 1. Direct light condition.
Target person is subject A.

(b) Experiment 2. Backlight condition.
Target person is subject A.

(c) Experiment 3. Direct light condition.
Target person is subject B.

(d) Experiment 4. Backlight condition.
Target person is subject B.

Fig. 17. The environments of the person identification experiment.

Table 3
Precision of person identification.
Height Gait Color All features with traditional joint  All features with proposed
feature approach joint feature approach
Experiment 1 0.542 0.712 0.949 0.949 0.966
Experiment 2 0.924 0.532 0.684 0.937 0.937
Experiment 3 0.810 0.726 0.903 0.921 0.948

rate than the others. For models A, B, E, F, and H, the correct
person’s are the second highest. These results show that the gait
feature is mostly effective to identify a person or to reduce the
number of possible identities of a person.

The model B, however, shows the lower identification rate for
the correct person, since the gait data of person B is in the most
dense area. It is difficult to identify the person using only the gait
feature in some cases, such as person B. This will be dealt with by
combining with the other features.

6. Person identification experiment

6.1. Person identification experiment

In order to compare the effectiveness of the features, we
conducted person identification experiments. In the experiments,
two people walk side by side while the robot is controlled manually
and follows both persons and measures their person features.
To evaluate the effectiveness of the each feature, five person
classifiers are constructed. These classifiers use the following
features, respectively.

. Height feature

. Gait feature

. Color feature

. All proposed features with the traditional joint feature ap-
proach

5. All proposed features with the proposed joint feature approach.

AW N =

For the classifiers with all the proposed features, we tested two
methods: one with a traditional joint feature approach and the
other with the proposed one. In the all experiments, online
boosting contains 10 weak classifier selectors, and each selector
contains 10 weak classifiers.

The experiments are conducted in three different cases (see
Fig. 16); two persons are with similar colors and different heights
in case (a); those with different colors and similar heights in case
(b); those with different colors and heights in case (c). The learning
process of the classifier with all the proposed features takes about
20 ms long for one person. We tested the proposed system in
this experiment, and calculate the precision of the identification.
Table 3 shows the result of the experiments.

The classifiers using a single feature show a good precision in
specific cases but not in the others. The classifiers with all the
proposed features show superior performances in all cases. In
addition, the classifier with the proposed joint feature shows equal
or greater precision than the one with traditional one. This shows
the effectiveness of the proposed joint feature.

6.2. Person identification experiment in severe illumination environ-
ments

We conducted person identification experiments for two target
persons and for two different illumination environments. Fig. 17
shows snapshots of the experiments. In experiments 1 and 3,
most of the persons were wearing similarly colored clothes and
sometimes entered shadowed areas. In experiments 2 and 4, color
information is almost lost due to a strong backlight. In all cases, it is
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Fig. 18. Personidentification experiment in a severe illumination environment: Red triangles above green rectangles indicate the identified target person. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

the person features are measured enough

the target person is lost

a person judged as the target person is found

Fig. 19. State machine for person following behavior.

Table 4
Result of the experiments in the severe environments.
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Total
Time (s) 157 213 195 200 765
Occlusion of the target [times] 11 11 8 13 43
Successfully tracked (s) 128 168 167 157 620 (81.0%)
Lost track of the target (s) 29 45 22 43 139(18.2%)
All features Tracked wrong person (s) 0 0 6 0 6(0.8%)
Lost track of the target [times] 3 6 3 4 16
Wrong association [times] 0 0 1 0 1
Successfully tracked (s) 128 102 74 105 409 (53.5%)
Lost track of the target (s) 29 61 24 21 135(17.6%)
Color feature Tracked wrong person (s) 0 50 97 74 221 (28.9%)
Lost track of the target [times] 3 1 1 2 7
Wrong association [times] 0 0 1 0 1

very difficult to identify the target person using color information
only.

Fig. 18 shows snapshots of the experiment 2; The experiment
was conducted in the most severe illumination environment.
Green rectangles in the images indicate detected persons and
the red triangles above them indicate the target person. At the
beginning of the experiment, the robot learned the features of the
target person and created a person classifier (Fig. 18(a)), and then
some persons occluded the target person (Fig. 18(b)(c)). The LRF-
based tracker failed to track the target person several times due
to the occlusion of the person (Fig. 18(d)(e)). The robot however,
found the correct target person using the person classifier, and
resumed correct tracking (Fig. 18(f)). In this experiment, the
robot successfully continued to track a specific person in spite
of temporarily-lost situations thanks to the height and the gait
feature.

Table 4 shows the result of the four experiments. The total time
for the experiments was about 765 [s] and the target person was
occluded by others 43 times through all of the experiments. The
robot lost track of the target person 16 times due to occlusions.
The person classifier, however, found the correct target person and

resumed the tracking every time. The robot tracked a wrong person
as the target for 6 [s] (0.8% of the experiments) due to a wrong data
association. However, that person was then judged not to be the
target and the robot then found the correct person. Among the rest
of the time, the robot correctly tracked the target person for 620 [s]
(81.0%) and looked for him while calculating the gait feature values
for 139 [s] (18.2%).

The person classifier with only the color feature was also
tested in the experiments. The robot with the classifier success-
fully tracked the target person in experiment 1. In the other exper-
iments, however, the robot tracked wrong persons in many frames
(221 [s] (28.9%)) due to severe illumination environments.

7. Person following framework

7.1. Tracking strategy

The LRF-based tracking method described above may some-
times fail to track the target person. The robot has to be able to re-
cover from such a failure situation. We therefore define three states
which switch in the operation as follows (see Fig. 19).
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Fig. 20. The person following experiment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In the initial state, the robot measures the person features
while following the target person. If a sufficient number of person
features are measured, the robot constructs a person classifier from
the features and transits to the tracking state. In the tracking state,
the robot performs the usual tracking and identification. When
the LRF-based tracking loses the target, the robot transits to the

temporary lost state. In this state, while the robot is looking for the
target person using the person classifier, the position of the target
person is predicted from the most recent person movement, and
the robot moves toward the position. If a person is judged as the
target, that is, the target person is re-identified, the robot transits
to the tracking state.
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7.2. Person following experiment

We applied the proposed system to person following experi-
ment. The experiment was conducted in both indoor and outdoor
environments. The experimental environment is a public space in
Toyohashi university of technology, and there were many ordinary
persons. Fig. 20 shows snapshots of the experiment. The left images
show experimental scenes. The right images show the images cap-
tured by the robot. The rectangular region in the upper right cor-
ner of the right images indicates range data and the conditions of
the LRF-based tracker. The circles in the region indicate the tracked
persons by the LRF-based tracker. The circles under the persons in
the images also indicate the position of the tracked persons. Green
rectangles in the images indicate detected person regions and the
red triangles above them indicate the target person.

The experiment started in a populated outdoor environment.
The robot followed a target person while measuring his features
(Fig. 20(a)). Then, the robot constructed the person classifier and
continued the following behavior. Several persons walked with the
target person, and often occluded the target person (Fig. 20(b)).
The LRF-based tracker lost the target person due to the occlusion
(Fig. 20(c)). The green circle in the upper right rectangular region
in the right image of Fig. 20(c) indicates the predicted target
person position to which the robot was moving. Once the target
person appeared and walked for several steps (Fig. 20(d)), the robot
realized that the person was the correct target to track (Fig. 20(e)).
After the robot followed the person for a while, the target person
moved to the indoor environment (Fig. 20(f)). While the person
and the robot were moving into the indoor environment, a strong
illumination change occurred (Fig. 20(g)) and the target person was
also occluded by another person (Fig. 20(h)). However, the robot
successfully found the target person (Fig. 20(i)(j)). After that, the
person returned to the outdoor environment and continued the
following behavior (Fig. 20(k)(1)).

The duration of the experiment is 920 [s], and the LRF-based
tracker lost the target person 11 times due to occlusions. However,
the robot re-identified the target every time and successfully
continued to follow the target throughout the experiment. The
average re-identification time after the person appeared was
5.6 [s]. Since during that time, the robot kept moving toward the
predicted position of the target, it was able to find the target when
he appeared again.

8. Conclusions and discussion

This paper has described a method of identifying a specific
person using color, height and gait features. An HS histogram is
extracted from the randomized rectangular region in the person
region and used as a color feature. To measure the height of
a person, we detect the sinciput position in the image using
the hair color model, gradient image, and the person position
obtained by the LRF-based tracking. We also develop a new
method of estimating the gait feature from accumulated range
data by spotting supporting leg positions using mean shift and
a maximum likelihood estimation with a constant step length
constraint. These features are combined into the joint features
and learned using online boosting. We tested the proposed multi-
feature identification method in a scenario where occlusions
frequently occurred under a severe illumination environment to
show the effectiveness of the method.

We currently suppose that the target person stays close enough
to the robot so that the robot can recognize them when they are
not occluded. If the person happens to be far from the robot, it
then has to move around and search a wide area for the person.
To reduce the possibility of encountering such a situation, the
robot has to be able to reliably predict the movement of the

person in various cases. By using the predicted position, we can
narrow down areas where the person may be there, and reduce
the number of the candidates for the person. We are now working
on modeling person movements and incorporating the predicted
position information into the current identification method.
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