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ABSTRACT

The transfer of task knowledge is ubiquitous in our daily
lives, where various types of interaction occur. Such an in-
teractive task knowledge transfer, however, requires that an
instructor and a learner to be at the same place and time. If
we use a robot to mediate between them, such limitations
can be eliminated. This paper focuses on human-to-robot
teaching, in which a robot instructor interactively teaches
a human learner how to achieve a task. We develop an
ambiguity-driven formulation of interactive teaching based
on the Dempster-Shafer theory. We implemented an exper-
imental system for blocks world tasks as a proof-of-concept
and show our preliminary results.
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INTRODUCTION

Transfer of task knowledge is ubiquitous. At production sites,
skilled workers teach novices various pieces of knowledge
such as how to manipulate objects, how to operate tools,
and how to organize production schedules. At home, parents
teach children, for example, how to use toys and how to cook.
Transferring such task knowledge requires an instructor and
learner to exist at the same place and time in order to use var-
ious modalities including gestures and actions. Using a robot
as a mediator, we could remove this limitation.

Robot-mediated task knowledge transfer is divided into two
stages: (1) a person teaches a robot; and (2) the robot teaches
another person. The first step is so-called robot teaching
and is one of the important research areas in robotics and
human-robot interaction (HRI). One promising approach is
programming by demonstration (PbD) or teaching by show-
ing, in which a human instructor demonstrates a task and a
robot observes it to make a task model [2]. second step has
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Figure 1. Human-to-human teaching by mutual demonstration.

not been significantly researched in robotics, although several
works discusses the affective communication strategy (e.g.,
[7, 5]) and/or physical presence of the teacher (e.g., [3]).

This paper deals with robot-to-human teaching of assembly
tasks through mutual demonstration. An instructor robot
first demonstrates an assembly step and a human leaner then
demonstrates what he/she has just understood (i.e., tries to
copy the same step). Fig. 1 shows an example teaching scene
among humans.

By mutual demonstration, an instructor transfers knowledge
of the task to a leaner. If transfer is not complete (e.g., the
learner misses some details), the learner could issue a query to
make it clearer. The instructor could provide an additional ex-
planation/demonstration when he/she thinks the learner does
not understand the task completely. Instructions are thus con-
sidered to arise when knowledge transfer by teaching is in-
complete, or trasferred knowledge is ambiguous. We would
like to develop a mechanism of such an ambiguity-driven in-
teraction with a robot. Moreover, the ambiguity is assessed by
estimating a learner’s internal model. We use the Dempster-
Shafer theory (DST) to formulate the model because DST can
express ambiguities explicitly.

MODELING INTERACTION PROCESS IN ROBOT-TO-

HUMAN TEACHING OF ASSEMBLY TASKS

Necessary models in interactive teaching

The instructor has a description of a task to teach, by follow-
ing which the task is achieved. We call the description a task
model. The model includes descriptions such as objects in-
volved in the task and geometrical relations between objects.
An assembly task is defined by a sequence of assembly steps,
and each step is described by a set of relations added (or re-
moved) by that step.

Models of others are for representing the internal state of oth-
ers, and can be used for predicting and recognizing their be-
haviors. Such a model is definitely important in developing
human-machine interaction systems such as intelligent tutor-
ing systems (e.g., [8]).
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Figure 2. Robot teaches human.

The goal of instructor, who has a complete task model, is to
make the learner construct the same model in his/her mind.
To check this, the instructor must estimate the learner’s de-
gree of understanding of the task. For this estimation, it is
further needed to know how the learner behavrs depending on
his/her internal state. Fig. 2 illustrates such a model-based in-
teraction; the robot will give appropriate (additional) instruc-
tions based on the learner’s model under estimation.

Modeling the interaction process

The process of teaching can be viewed as the one that the
set of possible task models (of an assembly step), or ambigu-
ity of task model, in the learner’s mind are gradually reduced
demonstrations/explanations by the instructor, and it finishes
when the instructor robot recognizes the complete transfer of
task knowledge.

Another important model of interaction is the relationship
between the learner’s task model and his/her behavior. The
learner may pose a question depending on what is ambiguous
about the task. For example, if which object to pick up is not
clear, he/she will ask about the identity of the object. Since
the robot instructor cannot directly see the learner’s internal
state, it is necessary to assess it from his/her behaviors.

Dempster-Shafer theory

We adopt the Dempster-Shafer theory (DST) [6] to represent
both parts of interaction modeling because ambiguity is a key
concept in both types of modeling and DST is very suitable
for representing ambiguities (or ignorance) [1]. In DST, a set
of possible (discrete) states Θ is called a frame of discern-
ment (FOD), and a degree of belief (called basic probability)
is assigned to each subset Ai of FOD such that the sum of
the basic probabilities becomes one. There are two quanti-
ties: belief function Bel(Ai) and plausibility Pla(Ai), which
represent the lower and the upper bound, respectively.

By assigning a probability to each subset, we can represent
“ignorance” explicitly; we can represent the case where we
know the answer is one of the two candidates, a and b, but do
not know which is more probable at all, by assigning the en-
tire probability mass to subset {a,b}. This way of assigning
probabilities is quite suitable for representing ambiguities in
possible task models.

Fusion of two independent source is performed by several
combination rules. We here use the Dempster’s combination
rule and denoted as ⊕.

Formulation of the interaction process

We formulate the interaction process as gradually refining the
basic probability assignment (bpa). The process is divided
into the following steps:

1. Demonstration and Initialization: demonstrate an assem-
bly step to the human, enumerate a set of possible models
as an FOD, and calculate bpa (i.e., assign basic probabili-
ties to its subsets).

2. Observation: observe the human’s behavior. Example be-
haviors are: execute the step perfectly, execute the step dif-
ferently, and make a query to the robot instructor.

3. Estimation: calculate a bpa for this observation and com-
bine it with the current bpa for update.

4. Judgement: assess the degree of task knowledge transfer.

a) Check if task knowledge of this assembly step is con-
sidered to be sufficiently transferred. This is done by
judging if only the subset with the correct relation set
(we call it the correct subset) as a single element has a
high basic probability. If this is the case, move to the
teaching of the next assembly step.

b) Otherwise, proceeds to interaction planning.

5. Planning: select and execute the best interactive action, and
then go to 2.

Interaction planning

Step 5 determines the robot’s best interactive action for trans-
ferring the task knowledge. We take a similar approach to
sensing planning under an uncertainty in which an action is
chosen that maximizes the expected utility with a prediction
of possible future states [4].

In the current context, prediction is about what the human will
perceive (or understand) by a robot action such as gesture or
verbal instruction. We would therefore like to maximize the
predicted belief on the correct subset A∗. The predicted belief
is the combination of the current belief mc and the belief mu

to be obtained by a robot interactive action u. The best action
u∗ is then given by:

u∗ = argmax
u

{Bel(A∗) given by (mc ⊕mu)(A)} . (1)

Calculation of basic probability assignment

Steps 1, 3, and 4 require the calculation of basic probability
assignments (bpa’s). We have not devised a general procedure
for that. We here show some ideas for this calculation and will
show examples in the experiments.

In steps 1 and 4, a bpa represents how the robot’s demonstra-
tion is perceived by the human. Apparent knowledge (e.g.,
whether to put an object on another or put an object aside
another) is easier to perceive, while a subtle difference (e.g.,
whether two planes should be coplanar) is more difficult. A
voice message could carry more information when teaching
an object’s identity, while a gesture would be better when
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Figure 3. The experimental setting. Figure 4. A blocks world task.

Table 1. Geometrical relations to achieve in the task shown in Fig. 4.

Alphabets indicate suface id’s.

step relations

1 Coplanar(1-C,2-D), Against(1-E,2-F)
2 On(4-C,2-A), On(4-C,1-B),

Coplanar(4-A,2-D), Coplanar(4-B,2-C)
3 On(3-C,2-A), Coplanar(3-A,4-B), Against(3-D,4-E)

teaching gemeotrical relations. The bpa to each subset should
be calculated considering such factors.

In step 3, the leaner’s state is estimated from his/her behavior.
We suppose that the learner’s behavior highly depends on the
state; if the learner thinks to have a firm knowledge, for ex-
ample, he/she will execute the current assembly step quickly
without any hesitation. If not, he/she may take a longer time
for execution or explicitly issue a query. We consider the
ambiguity in the learner’s model is almost directly related to
his/her behaviors.

EXPERIMENTAL RESULTS

The robot and the task

Fig. 3 shows the experimental setting. The robot (HIRO by
Kawada Co.) recognizes the workspace and human actions
using two Kinects and a camera. Verbal communication with
a designated set of words is also used. Fig. 4 shows an ex-
ample task in which four blocks are assembled in three steps:
put blocks 1 and 2, put block 4 on blocks 1 and 2, and put
block 3 on block 2. Table 1 shows the geometrical relations
to be achieved in each step.

Examples of robot-to-human interactive teaching

We conducted three trials of robot-to-human interactive
teaching. In one case, the transfer is completed without
additional interactions because the human learner was able
to achieve the correct assembly steps only from the robot
demonstrations. In the other cases shown below, additional
interactions were necessary.

Case 1: Query from the learner

When the robot teaches step 2, the human learner asks if a
coplanar relation is necessary. The robot replies it is neces-
sary and the learner correctly reproduces the step. Fig. 5
shows this process.

Case 2: Incomplete knowledge acquisition of the learner

When the robot teaches step 3, the human learner receives an
incomplete set of knowledge, which is found in his demon-
stration. The robot then gives an additional advice to clarify

(1) Robot demonstrates step 2, which achieves four relationships as shown in Table 1. There are 

15 possible consequences. Some of the bpa’s are shown on the right. The correct subset is 1 and 

given 0.6. The set including all consequences is given 0.3 but is not shown in the graph.

(2) Human asks if blocks 2 and 4 are aligned [i.e., relation coplanar(4-B, 2-C)]. From this query, 

the robot supposes that the human is ambiguous in this relationship, and calculates the bpa shown 

in red. Subsets that include consequences with and without that relationship have higher 

probabilities. Combining this and the bpa above, the bpa in blue is obtained. Since the belief of 

the correct subset, 0.54, is less than the threshold, the robot plans an interactive action of 

answering " yes" , and this makes the probability of the correct subset higher.

(3) After getting an answer to the query, the learner demonstrates what he has learned. From a 

combination of prior knowledge with knowledge gained from newly observed demonstrations (in 

red), the robot gets the blue bpa on the right. Since the belief of the correct subset is higher than 

the threshold, the robot considers that the learner obtained enough knowledge of this assembly 

step, and moves to the teaching of the next step.

Figure 5. Interaction example 1: query from the learner.

an ambiguous point and the learner corrects his knowledge to
complete the step. Fig. 6 shows this process.

CONCLUSIONS AND DISCUSSION

We have developed a formulation for robot-to-human inter-
active teaching of assembly tasks. It is ambiguity-driven and
based on the Dempster-Shafer theory (DST). The interaction
process during teaching is viewed as the one of choosing
interactive actions which reduce ambiguities in the human
learner’s estimated knowledge. This process is well modelled
by DST. As proof of concept, we implemented and tested a
robot system that can teach blocks assemblies to a human.

A key to realizing a smooth interaction is to properly deter-
mine basic probability assignments (bpa’s). Currently, bpa’s
are set manually considering the degree of knowledge trans-
fer for each demonstrations and instructions. As stated above,
this would depend on many factors such as the learner’s past
experiences and the complexity of the task, and should also
change as the teaching proceeds. Investigating a reasonable



(1) Robot demonstrates step 3, which achieves three relationships as shown in Table 1. Some of 

the bpa’s are shown on the right. The correct subset is 1 and given 0.6.

4

3

observed relations

 

is missing.

(2) The robot observed the human demonstration and found that one geometrical relation 

[coplanar(3-A,4-B)] is missing. Combined with the newly obtained bpa (in red), the updated 

bpa (in blue) is obtained.

(3) Since the belief of the correct subset is less than the threshold, the robot generates and 

executes a pointing gesture-based additional advice. The predicted bpa is updated and, as a 

result, the correct subset has a sufficient probability.

(4) After the advice, the robot asks the learner to demonstrate again. This time, he does it 

correctly and the belief becomes above the threshold. The robot then judges that the knowledge 

of this assembly step is correctly transferred.

Figure 6. Interaction example 2: incomplete knowledge transfer.

way to determine bpa’s and a mechanism for learning them
is a very challenging work. For this purpose, we also need
to seek various cues that will appear in human behaviors and

will be effective in estimating the degree of the human’s un-
derstanding.

It is also necessary to enhance the robot’s ability. The robot
can teach what it can do. Implementing various robot skills
is necessary for applying the proposed framework to more
complex tasks.

Our ultimate goal is to develop a robot mediator, which
gets knowledge from a human expert and gives it to a hu-
man novice. We could apply programming by demonstration
(PbD) research works in the former step. As a robot leaner, it
is necessary to actively asks the human instructor for uncer-
tain/missing pieces of knowledge. An interaction planning
perspective, which has been introduced in robot-to-human
teaching in this paper, will also be necessary in human-to-
robot teaching.
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