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Abstract. Estimating the state of a person, such as walking and talking
with others, is an important function of attendant robot for generating
appropriate behaviors. This paper describes an image-based human body
orientation estimation using a convolutional neural network. By training
the network with a massive SURREAL dataset, the network exhibits a
high accuracy while keeping the calculation cost low enough for real-time
applications. The evaluation has been done using our precisely annotated
dataset.
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1 Introduction

Attending is one of the tasks of mobile service robots, which requires generating
robot actions adaptively to the state (or behavior) of a person, such as walking,
sitting, and taking with others. As a key information for the state estimation,
we deal with the body orientation. It is related to social relationships to the
surrounding people as well as the direction of motion and/or attention.

There are two major approaches to body orientation estimation. One is to
use shape information obtained by range sensors like LIDARs [1–3]. The other
is to use appearance information obtained by cameras [4–6]. The shape data is
useful for numerically estimating orientation but weak to various disturbances
such as clothings and items to hold. Image data can provide rich information
and image-based CNNs (Convolutional Neural Networks) have been successfully
applied to orientation classification but not for orientation estimation.

We pursue the image-based approach for orientation estimation. To increase
the accuracy, we design a CNN and use a large dataset of synthetic images with
additionally using our original real dataset. The proposed method is evaluated
using real data to show its effectiveness.

The rest of the paper is organized as follows. Sec. 2 describes related work.
Sec. 3 describes existing and improved CNNs for body orientation estimation.
Sec. 4 describes a synthetic dataset and our real dataset. Sec. 5 shows exper-
imental comparison results. Sec. 6 describes preliminary attempts to applying
the body orientation estimation to attendant robot. Sec. 7 concludes the paper
and discusses future work.
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2 Related Work

2.1 LIDAR-based body orientation estimation

The section of waist-level body of a person obtained by a 2D LIDAR placed
horizontally changes according to the relative orientation between the person
and the robot. Glas et al. [1] estimate the orientation by combining LIDAR data
from multiple viewpoints. Matsumoto et al. [2] recognize the person posture
by extracting body shape features by multiple LIDARs. These methods require
multiple LIDARs put at different positions and are thus not applicable to mobile
robots applications.

Shimizu et al. [3] estimate the orientation by matching the scan data from a
single LIDAR with a set of scans taken in advance with ten degree-interval of ori-
entations. Since the estimation using only one scan data is sometimes inaccurate,
they combines the result with the motion data based on the orientation-motion
consistency (i.e., people usually walk forward). However, the method suffers from
a low accuracy for stopping or very slow situations as well as is sensitive to body
shape and/or bags and clothings.

2.2 Image-based body orientation estimation

Weinrich et al. [4] classify the body orientation using HOG [7] and SVM [8].
Ardiyanto and Miura [5] developed a classification method based on PLS (partial
least squares)-based image feature selection. They also used the orientation-
motion consistency for improving accuracy. Choi et al. [6] propose to use a
lightweight CNN (convolutional neural network) for orientation classification.
The classification rate of these works is 81% at best for classification of eight
orientations. This is not enough for motion prediction and behavior recognition.

3 CNN-based orientation estimation

Convolutional neural networks (CNNs) are shown to exhibit very high perfor-
mances in various recognition tasks [9, 10]. Choi et al. [6] use a CNN with two
convolutional and three fully-connected layers for orientation classification. In
image recognition tasks, much deeper networks have been used [11].

We adopt one of the best networks by Simonyan et al. [10] as a base network.
The network has thirteen convolutional and three fully-connected layers. We
modify the original network in the input and the output layers, the number
of channels in the convolutional layers, and the number of nodes of the fully
connected layers.

Fig. 1 shows the configuration of the proposed network. The input is gray-
scale images normalized to 100 × 100 pixels. The output is the motion vector,
represented by two elements (i.e., velocity in x and y directions). A linear func-
tion is used as an activation function.

Our body orientation estimation task is simpler than the original, a 1000-
category classification task. We therefore reduce the size of the parameters from
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Fig. 1. Proposed network configuration.

the original one. The number of channels of all convolutional layers is set to 64
and the numbers of nodes of the fully-connected layers are set to 512, 64, and
2 from the input side to the output one. We also apply a batch normalization
step [12] just after every convolutional layer.

4 Datasets

4.1 Dataset for training

The amount and the variety of the dataset used for training are crucial for ef-
fective deep learning. We used Synthetic hUmans foR REAL tasks (SURREAL)
dataset [13]. This dataset includes about six million images, which are generated
by combining synthetic person images with real background images. The dataset
provides a set of an RGB image, a depth image, a part labels image, and 2D-
and 3D joint locations, but does not provide body orientation nor a bounding
box. We thus generate these additional data as follows.

The body orientation vector is calculated by (see Fig. 2):

1. Extract body-to-left shoulder and body-to-right shoulder vectors to form a
basis.

2. Calculate the 3D body orientation vector as an outer product of these vec-
tors.

3. Project the 3D vector to the ground plane (the X-Y plane).

The bounding box for each data is determined as the circumscribing rectangle
of pixels with any body part labels (see Fig. 4). The number of images in the
final dataset is 2,336,851.
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Fig. 2. Calculate the orientation vector in 2D.
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Fig. 3. Data collection system.

(a) Part label image. (b) Binary image. (c) Bounding box.

Fig. 4. Calculating a bounding box.

4.2 Data for testing

There are few data for human images with body orientation annotations. So we
collected such data by ourselves using the system with a rotary table developed
by Nishi and Miura [14] (see Fig. 3). The table can measure the rotation angle
by observing the markers on it from the top. Sensors used for estimation are
set horizontally to observe the person on the table, supposing the use by a
mobile robot. Considering various application scenarios, we use the following
three sensors: an RGB camera, a 2D LIDAR (Hokuyo UST-20LX), and a 3D
LIDAR (Velodyne HDL-32e). We obtained data for thirteen male subjects.

Each data has the bounding box and body orientation annotations. Bounding
boxes are determined by using SSD (single shot multibox detector) [15]. The
number of images in the test dataset is 15,142.

5 Experiments

5.1 Training of the CNN

We use 90% of the data for training and the rest for validation. Table 1 sum-
marizes the parameters used for training. Fig. 5 shows the training curve of the



Table 1. Training parameters

Loss function MSE

Batch size 64

Learning rate 0.0001

Optimizer Adam

Graphic card GeForce Titan X Pascal

Fig. 5. Training curve of the network.

proposed network. The total training time was 82 hours (40 epochs) and the
average training time per epoch was two hours. The validation loss decreases
rapidly until epoch 3 and does gradually afterwards.

5.2 Performance evaluation

Performance evaluations have been done using the test (real) dataset. Fig. 6
shows the confusion matrix and mean absolute errors of the proposed method.
The confusion matrix is generated by discretizing the estimation result into bins
with the ten-degree interval. The accuracies with zero-degree, ten-degree, and
twenty-degree allowance are 47.7%, 89.7%, and 97.5%, respectively. The aver-
aged absolute error is about 6.9 [deg], which is accurate enough for orientation
estimation. The averaged processing time is 0.00873 [sec].

Fig. 7 shows the result of a modified network whose inputs are RGB images
instead of gray images. Fig. 7 shows the result. The accuracies with zero-degree,
ten-degree, and twenty-degree allowance are 42.9%, 89.3%, and 98.1%, respec-
tively. The averaged absolute error is about 7.1 [deg]. The performance is slightly
worse than that of the gray image-based. The averaged processing time is 0.00911
[sec].

To investigate the effectiveness of convolutional layers, we examine the per-
formance of the network with three convolutional layers; this is a modification
of [6], which outputs the 2D orientation vector. The accuracies with zero-degree,
ten-degree, and twenty-degree allowance are 31.4%, 71.3%, and 86.9%, respec-
tively. The averaged absolute error is about 15.5 [deg]. The averaged processing



(a) Confusion matrix. (b) Mean absolute errors.

Fig. 6. Accuracy of the proposed method.

(a) Confusion matrix. (b) Mean absolute errors.

Fig. 7. Accuracy of the proposed network with RGB inputs.

(a) Confusion matrix. (b) Mean absolute errors.

Fig. 8. Accuracy of a LIDAR-based method [3].

time is 0.00434 [sec]. By increasing the number of convolutional layers (from
three to thirteen), the accuracy increases with a small amount of extra compu-
tation.

We then compare the proposed image-based method with our LIDAR-based
method [3] using the same test dataset. Since the body shape, which is usually
ellipse-like, inherently has an ambiguity between orientations with 180 [deg]
interval, we evaluated the method for the orientation range between 0 ∼ 180
[deg]. The accuracies with zero-degree, ten-degree, and twenty-degree allowance
are 26.4%, 63.4%, and 78.9%, respectively. The averaged absolute error is about
16.3 [deg]. The averaged processing time is 0.00035 [sec].



Table 2. Comparison between body orientation estimation methods.

method accuracy [%] accuracy [%] accuracy [%] averaged averaged
(±0 [deg]) (±10 [deg]) (±20 [deg]) error [deg] time [msec]

proposed (gray) 47.7 89.7 97.5 6.94 8.73

proposed (color) 42.9 89.3 98.1 7.10 9.11

modified Choi’s 31.4 71.3 86.9 15.5 4.34

LIDAR-based 26.4 63.4 78.9 16.3 0.35

Table 2 summarizes and compares these results. From the table, the proposed
method exhibits a nice performance with a reasonable processing time for real-
time applications.

6 Application to Attendant Robot

This section shows an example of applying the proposed body orientation esti-
mation to generating a robotic attending behavior. We have proposed a method
of generating adaptive attending behaviors of a robot according to the user’s
states such as walking and sitting [16]. We here show the case for the user’s
sitting state.

After recognizing that state, the robot plans its waiting position considering
the user’s comfort as well as collision avoidance. Reliably estimating the body
orientation is an important factor for the user’s comfort. Fig. 9 shows snapshots
of the robot’s attending behavior to a sitting person. The robot first detects a
sitting person using our human detector [17] and estimate the body orientation
using the proposed method (see Fig. 9(a)). The right image is the view from the
robot camera and the numbers inside indicate the confidence of the person de-
tection (left) and the estimated body orientation (right). The robot approaches
to the waiting position while estimating the person position and the body ori-
entation, thereby localizing itself with respect to the person (see Fig. 9(b)) and
finally reaches to the waiting position (see Fig. 9(c)).

7 Conclusions and Future Work

This paper has described an image-based human body orientation estimation
using a convolutional neural network. The input to the network is a cropped
gray image of human region and the output is the 2D body orientation vector.
By training the network with a massive SURREAL dataset, the network exhibits
a high accuracy while keeping the calculation cost low enough for real-time ap-
plications. Especially it achieves a better accuracy than a LIDAR-based method
that uses metric information directly. We have also shown an application of the
body orientation estimation to an attendant robot.

The current network design is somehow heuristic and further investigation
would be necessary to evaluate the trade-off between training/calculation costs



(a) Detect a sitting person.

(b) Approach to the waiting position.

(c) Reach to the waiting position.

Fig. 9. Attending behavior to a sitting person.

and estimation accuracy. We are also applying the method to recognizing a more
variety of human behaviors.
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