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Abstract. Interacting with humans remains a challenge for autonomous
vehicles (AVs). When a pedestrian wishes to cross the road in front of the
vehicle at an unmarked crossing, the pedestrian and AV must compete
for the space, which may be considered as a game-theoretic interaction in
which one agent must yield to the other. To inform development of new
real-time AV controllers in this setting, this study collects and analy-
ses detailed, manually-annotated, temporal data from real-world human
road crossings as they interact with manual drive vehicles. It studies the
temporal orderings (filtrations) in which features are revealed to the ve-
hicle and their informativeness over time. It presents a new framework
suggesting how optimal stopping controllers may then use such data to
enable an AV to decide when to act (by speeding up, slowing down, or
otherwise signalling intent to the pedestrian) or alternatively, to continue
at its current speed in order to gather additional information from new
features, including signals from that pedestrian, before acting itself.6

1 Introduction

While localisation, mapping, route planning, and control are now largely solved prob-
lems for autonomous vehicles in static and ballistic environments [8], the major out-
standing challenge for real-world autonomous vehicles is operation in environments
containing people. Unlike static and ballistic environments, people are complex in-
teractive agents having their own goals, utilities, and decision making systems, and
interactions with them must take these into account in order to predict their actions
and plan accordingly. Interaction is recursive and complex: an AV’s own actions will
affect the person‘s actions and vice versa. This is critical in environments where traffic
rules do not clearly define priority, such as at unmarked intersections, where AVs and
pedestrians have to negotiate over who will pass the other.
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A game-theoretic model of such interactions was recently presented [4] proving that
(under several assumptions including discretisable space and time, no lateral motion,
and communication only via agent positioning on the road) the optimal strategy for
both agents is probabilistic and recursive. As the two agents get closer over time, both
should gradually increase the probability that they will yield at each time, then draw
their yield or non-yield action from this probability. The probabilities both tend to
unity as the agents get closer to a collision. The model proves that there must remain
some small but strictly non-zero probability of the crash actually occurring, in both
agents strategies, in order for the interaction to proceed optimally. (This formalises the
intuition that if an AV is known to be perfectly safe, then it will make no progress as
all other road users may push in front of it at every interaction.) A second study [1],
then empirically measured human behaviours in a laboratory version of a road crossing
scenario, and suggested it is possible to assign a single parameter to each agent which
summarizes their entire behavioral preferences during such interactions. This parameter
measures ‘assertiveness‘ as θ = Utime/Ucrash, the ratio of the agents value of time (i.e.
dollar value of losing 1 second of arriving at their destination, for example by yielding
to the other agent for road priority), and the agents (negative) value of the collision
actually occurring (which will be worse for an unarmoured pedestrian than for the
driver of a heavy protective car, especially of a larger car such as an SUV).

Fig. 1: Intersection where pedestrian-vehicle road-crossing interactions were ob-
served, by observers at locations X and Y. (WGS84: 53.8073, -1.5518)

Real-world AV controllers based on this game theoretic model would thus benefit
from any additional information about θ for pedestrians which they encounter in such
situations. θ is not directly observable but the previous study recommended further
work to discover observable features which help to infer it.

To this end, the present study proposes a new temporal filtration-based framework
for analyzing pedestrian-vehicle interactions during road crossings. It uses data col-
lected manually from real-world road crossings interactions between pedestrians and
human drivers in an urban environment, to study how information about the winner
is revealed over time via a set of manually defined and collected features. For example,
an AV encountering a pedestrian trying to cross may initially see information about
the road geometry, then the demographic of the pedestrian, then movements made by
the pedestrian. During this period, the AV may choose to act (e.g. changing its speed



or otherwise signalling to the pedestrian) or to not act and continue with its current
ballistics for some period in order to collect more information. As a (literal!) Optimal
Stopping problem, the framework shows the trade-off between time and information:
if the AV waits too long then it will pass or hit the pedestrian before any decision
is made; but if it acts too soon then its risks missing valuable information about the
pedestrian which would improve the action selection.

1.1 Related work

This is a work-in progress report which presents early results from the data analysis and
the initial conceptual framework (filtrations and optimal stopping applications to AVs),
which together represent first steps towards building AV controllers based upon them.
To our knowledge, there is no previous work related to filtering pedestrian-vehicle
action sequences. A review on different approaches for pedestrian crossing behavior
modelling and analysis is provided in [10]. Methods of analysis are often performed
via video recording, semi-structured interviews and VR recording. Previous work on
pedestrian crossing behavior analysis can be found in [14] [5] [9] [12] [19]. Rasouli et
al. introduce [14] [15] a novel dataset composed of 650 video-clips for driver-pedestrian
interactions in several locations and different weather conditions. The analysis of their
data show that attention plays an important role, as in 90% of the time, pedestri-
ans reveal their intention of crossing by looking at the approaching vehicles. Rasouli
et al. also present some behavioral patterns that have been observed in their data,
that show some frequent sequences of actions that are used by pedestrians in their
crossing behavior. Similar to our approach [13] uses task analysis to divide pedestrian-
vehicle interaction as a sequence of actions giving two outcomes, either the vehicle
passes first or the pedestrian crosses and perform some experiments with participants
on their crossing behavior using virtual reality. In [5], Gorrini et al. analyzed video
data of interaction between pedestrians and vehicles at an unsignalized intersection
using semi-automatic tracking. Their study shows that pedestrian crossing behaviour
can be divided into 3 phases: approaching (stable speed), appraising (deceleration due
to evaluation of speed and distance of oncoming vehicles) and crossing (acceleration).
Papadimitriou et al. [12] made a comparison of observed and declared behaviour of
pedestrians at different crossing areas, as a method to assess pedestrian risk taking
while crossing. They found that their observed behavior is in accordance with their
declared behaviors from a questionnaire survey and they report that female and male
participants have similar crossing behavior. In [9] drivers’ crossing behaviour model in
China at unsignaled intersections is presented using game theory and their risk per-
ception is inferred via an adaptative neuro-fuzzy inference system. Previous works [18]
[9] [11] have focused on the evaluation of speed, TTC (Time To Collision), gap ac-
ceptance and communication means (e.g eye contact and motion pattern) of the road
users but not really into how the interaction can be modelled as a sequence of the
actions, more meaningful for autonomous systems. Surprising results have suggested
that for autonomous vehicles, some apparently intuitive human communication styles
might not be necessary for interactions with pedestrians. [3] showed that facial com-
munication cues such as eye contact do not play a major role in pedestrian crossing
behaviors, and that the motion pattern and behavior of vehicles are more important.
Human drivers and pedestrians check for eye contact when the vehicle moves in an
unexpected manner [3] [17]. However [6] showed that pedestrians can use eye-contact
to influence drivers behavior and make them stop more often at crossings, which has
the advantage of increasing the pedestrians’ confidence while crossing. Similar results



from [16] show that vehicle movement is sufficient for indicating the intention of drivers
and present some motion patterns of road users such as advancing, slowing early and
stopping short. Statistical Filtration is a concept to incorporate events over time which
is widely used in Optimal Stopping problems [2], such as the classic marriage problem
which asks how many Tinder dates ones should attend and discard in order to infer
the statistics of the population before marrying one of them. It is also used in finance,
for example in pricing options to trade a stock at the days volume weighted average
price (VWAP), which requires trades to be made before this price is fully known [7].

2 Methods

The study consists of data collection from real-world urban pedestrian-vehicle crossing
interactions; definitions of features including descriptor, event, and outcome features;
and analysis of outcome probability and value of information given the filtration of the
features at each point in time.

2.1 Data collection

An ethnographic observation study on pedestrian-vehicle interactions was conducted at
an unsignalized intersection near the University of Leeds, UK. After a six-weeks explo-
ration phase, including the observation of 70 pedestrian-vehicle interactions constitut-
ing the basis for 15 iterations to design a digital observation protocol, 204 road-crossing
interactions were observed in a unified manner including the presence or absence of 62
temporal event features and 12 static descriptor features within each interaction, listed
in Tables 1 and 2. The observers positioned themselves near the intersection as shown
in figure 1, and worked together to identify and agree on when a vehicle-pedestrian
pair took place in an interaction, one observing the vehicle and driver behaviour and
the other observing the pedestrian behaviour. From the very start of the observation,
each observer talked out loud about how the observed subject moved, communicated
and reacted to the other observer’s subject, which allowed the collaborative explication
of timely correct behaviour sequences. Once the interaction had ended, both observers
filled in the digital observation protocol from start till end, one typing and the other
controlling. Observation and data collection was conducted in accordance with Univer-
sity of Leeds Ethics and Data Protection regulations.

2.2 Data preparation

The winner (i.e. the pedestrian or vehicle which takes priority in the conflicted space
and passes by the other) for each interaction was determined, and one of two new events
were inserted into the filtrations to annotate this at the time it becomes actualised:
(Vehicle passed the Pedestrian or Vehicle stopped for observed Pedestrian). We say ‘the
game is over’ at the time within the interaction when the outcome becomes actualised.
In most cases, features continued to be collected after the end of the game, and these
remain preserved in the sequences. We then re-estimated the frequencies freq(W, fi)
and freq(¬W, fi) using Good-Turing estimation (add-one to each observed frequency)
to deal with unobserved events in our data, and computed the normalized likelihoods,

λ(W |fi) =
freq(W |fi)

freq(W |fi) + freq(¬W |fi)
,



Descriptor Features di λ(W|di)
Pedestrian: older person (60+ years) 0.87542

Pedestrian: teenager (13-18y) 0.7008

Weather: Rainy 0.568513

Pedestrian’s Distraction 0.5506

Pedestrian: midage adult (30-60y) 0.54586

Pedestrian: Gender (Female) 0.54111

Weather: Sunny 0.5033

Weather: Overcast 0.4875

Pedestrian: young adult (18-30y) 0.46762

Group of Pedestrians 0.42586

Driver/Vehicle Interacting Vehicle Coming From right 0.37752

Driver/Vehicle Interacting Vehicle is Single 0.37137

Table 1: All 12 descriptor features used for the observation of Pedestrian-Vehicle
Interaction listed by descending order of likelihood λdi

(a) Vehicle passes first, Pedestrian
stepped back on the pavement

(b) Group of pedestrians crossing
while the vehicle stops for them

(c) Pedestrian initiating crossing
but finally decides to walk further
on the left after the vehicle passes

(d) Vehicle stopped due to traffic
while the Pedestrian is approaching
but the vehicle passed first

Fig. 2: Examples of observed pedestrian-vehicle interactions at the unsignalized
intersection



Event Features ei λ(W|ei)
’Crossing Phase: Pedestrian Speeded up’ 0.95471

’Crossing Phase: Driver/Vehicle Decelerated for observed pedestrian’ 0.84051

’Crossing Phase: Driver/Vehicle Used signals Turn Indicator’ 0.77844

’Approaching Phase: Driver/Vehicle Waved hand’ 0.77844

’Approaching Phase: Driver/Vehicle Head Movements Other (elaborate in notes)’ 0.7784

’Crossing Phase: Driver/Vehicle Movement Other (elaborate in notes)’ 0.77844

’Crossing Phase: Pedestrian Raised hand in front’ 0.77844

’Crossing Phase: Driver/Vehicle Raised hand in front’ 0.7784

’Crossing Phase: Driver/Vehicle Head Turned in the direction of pedestrian’ 0.7784

’Crossing Phase: Driver/Vehicle Stopped for observed pedestrian’ 0.7784

’Crossing Phase: Pedestrian Looked at driver’ 0.7784

’Approaching Phase: Driver/Vehicle Stopped due to other pedestrian’ 0.7784

’Crossing Phase: Pedestrian Movements Other (elaborate in notes)’ 0.77844

’Crossing Phase: Pedestrian Initiated crossing movement’ 0.7712

’Approaching Phase: Driver/Vehicle Head Turned in the direction of pedestrian’ 0.74541

’Crossing Phase: Pedestrian Head Movements Turned left’ 0.7454

’Approaching Phase: Driver/Vehicle Interacting vehicle Bus / Truck’ 0.72490

’Approaching Phase: Vehicle Stopped for observed pedestrian’ 0.7008

’Crossing Phase: Pedestrian Looking at other pedestrians entering the road 0.6372

’Crossing Phase: Pedestrian Waved Hand’ 0.63725

’Approaching Phase: Driver/Vehicle Head Turned left’ 0.6372

’Approaching Phase: Driver/Vehicle Movement Other (elaborate in notes)’ 0.6372

’Approaching Phase: Pedestria Hand Movements Other (elaborate in notes)’ 0.6372

’Crossing Phase: Driver/Vehicle Turned left’ 0.6372

’Crossing Phase: Vehicle Waved hand’ 0.63725

’Crossing Phase: Driver/Vehicle Accelerated’ 0.63725

’Crossing Phase: Driver/Vehicle Turned right’ 0.6372

’Approaching Phase: Pedestrian Looking at other pedestrians entering the road’ 0.6372

’Approaching Phase: Pedestrian Looking at other RUs Others (elaborate in notes)’ 0.6372

’Approaching Phase: Driver/Vehicle Used signals Flashed Lights’ 0.6372

’Approaching Phase: Pedestrian Movements Kept pace’ 0.6231

’Approaching Phase: Vehicle Used signals Turn Indicator’ 0.559

’Crossing Phase: Driver/Vehicle Passed the pedestrian’ 0.5394

’Approaching Phase: Pedestrian Movements Did not Stop’ 0.5365

’Approaching Phase: Pedestrian Head Movements Turned right’ 0.53485

’Approaching Phase:Driver/Vehicle approached From left’ 0.5292

’Approaching Phase: Driver/Vehicle Decelerated due to other pedestrians’ 0.5131

’Approaching Phase: Driver/Vehicle Stopped due to traffic’ 0.51315

’Approaching Phase: Driver/Vehicle approached from Multiple’ 0.5009

’Approaching Phase: Driver/Vehicle Decelerated for observed pedestrian’ 0.4875

’Approaching Phase: Pedestrian Speeded up’ 0.46762

’Crossing Phase: Pedestrian Raised hand sidewards’ 0.4676

’Approaching Phase: Driver/Vehicle Interacting vehicle Other (elaborate in Notes)’ 0.4676

’Crossing Phase: Pedestrian Stepped back on pavement’ 0.4676

’Approaching Phase: Driver/Vehicle Turned left’ 0.45419

’Approaching Phase: Pedestrian Stopped at the edge of the pavement’ 0.43844

’Approaching Phase: Pedestrian Stepped on road and stopped’ 0.42951

’Approaching Phase: Pedestrian Head Movements Turned left’ 0.42951

’Approaching Phase: Pedestrian Movements Slowed down’ 0.4260

’Crossing Phase: Pedestrian Looking at Looked at vehicle’ 0.41269

’Approaching Phase: Driver/Vehicle Decelerated due to traffic’ 0.3874

’Crossing Phase: Pedestrian Hand Movements Other (elaborate in notes)’ 0.36931

’Approaching Phase: Driver Head Turned right’ 0.36931

’Approaching Phase: Driver/Vehicle Interacting vehicle Van’ 0.3693

’Approaching Phase: Driver/Vehicle Kept pace’ 0.36931

’Approaching Phase: Driver/Vehicle Turned right’ 0.3598

’Crossing Phase: Pedestrian Head Movements Turned right’ 0.3341

’Approaching Phase: Pedestrian Looked at approaching vehicle’ 0.3129

’Crossing Phase: Pedestrian Looking at other RUs (elaborate in comments)’ 0.26

’Crossing Phase: Pedestrian Slowed down / stopped 0.26

’Approaching Phase: Driver/Vehicle Accelerated’ 0.163316

’Approaching Phase: Driver/Vehicle Passed the pedestrian’ 0.11514

Table 2: All 62 event features used for the observation of Pedestrian-Vehicle
Interaction listed by descending order of likelihood λei



for each feature (where W means pedestrian wins and ¬W means that the pedes-
trian does not win, i.e. the vehicle wins) given that we observed individual features fi
anywhere during the interaction.

2.3 Filtration

The normalized likelihood representation allows for simple filtration-based fusion of
the features. A filtration, F(t) is a monotonically growing set of observations (feature)
available over time t, such that F(t+∆t) comprises F(t) and all new features observed
in the interval (t + ∆t). Normalized likelihoods are single values in range [0,1] which
yield posteriors when Bayes-fused with priors, as,

P (W |f1, f2, fn) = P (W |0)⊗ λ(W |f1)⊗ λ(W |f2)⊗ . . .⊗ λ(W |Fn),

where the Bayesian fusion operator is,

p⊗ q =
pq

pq + (1− p)(1− q) .

and P (W |0) is the prior. Using this form of filtering, a real time system can begin with
a prior estimate about the winner, and iteratively fuse in each normalized likelihood
as it becomes available.

Two types of feature appear in the filtration: static descriptor features which de-
scribe a property of the entire interaction and are observable from start, such as age
and gender of the pedestrian, weather, or time of day; and temporal event features
which occur and are observable at a particular instant during the interaction, such as
the presence of eye-contact, placing a foot in the road, or making a hand gesture. We
assume that the prior P (W |0) is available at t = 0; that all present descriptor features
di become available together at the start of the interaction at time t = 1; and that the
temporal event features ei are revealed to us one at a time at times t(ei). In the present
study we assume these are integer valued times which correspond directly to the events
index in the observed sequence, rather than exact real-valued times of the events (this
is for simplicity as this is a just proof of concept study.) Thus, F(t) = {di}∀i∪{ej}j=2:t,
and for each interaction, we infer the sequence of probabilities P (W |F(t)).

2.4 Residual filtration posterior volatility

From the shapes of the filtrations, we wish gain insights useful for the design of a
real-time AV controller. In particular: what is the balance of information contained in
the initial descriptors which are available right away, vs information arriving later in
the filtration? This should give insight into how much future AV controllers need to
care about optimal stopping issues: whether they should typically act immediately on
detection of a new interaction and/or of its descriptors, or whether they should bide
their time collecting more information before acting.

As a measure of this value of information over time, we thus define a series of
residual filtration posterior volatility statistics,

st = 〈std{P (W |F(τ))}τ=t:T 〉,

where the expectation is over interactions, and std is the standard deviation operator.
These statistics are second order statistics: they measure the volatility of our own belief
over time during interactions. The statistic st for time t measures how much fluctuation
is expected to occur in our own beliefs over the remaining time within the interaction.



3 Results

Fig. 3(a) shows the distribution of durations of games (as number of features in the
sequence before the game is over) and Fig. 3(b) shows the distribution of the longer
interaction durations, which also include observations of features after the game is
over. In the absence of any other information, the prior on the outcome is computed as
P (W |0) = 36% (74 of 204) of the interactions which resulted in the pedestrian winning
(defined as by their passing through the conflict area before the vehicle). There were
no observed collisions between vehicles and pedestrians.

(a) Game length (b) Interaction length

Fig. 3: Lengths of games and interactions

3.1 Filtering: effect of observations over time on outcome

Figure 4 and 5 show examples of the posterior P (W |F(t)) for particular interactions.
We inserted two new types of event, Pedestrian wins and Vehicle wins, when we observe
a feature that determines the end of the interaction such as Vehicle passed the pedestrian
or Vehicle stopped for observed pedestrian, the rest of the sequences then becomes no
more interesting as we already know the winner of the interaction.

3.2 Residual filtration posterior volatility profiles

Fig. 7 shows the series of st statistics computed over all interactions and Fig. 6 for ten
particular interactions. This shows that the expected volatility of belief decreases over
time up to around time 5-10, then levels off. The decrease period includes both the
initial observation of the descriptor features, plus the first few event features, but not
later event features.

4 Discussion

The filtration results in Fig. 7 show that there is high volatility in belief about the
interaction outcome at the start of an interaction, decreasing rapidly as first descriptors



(a) Before inserting stop event (b) After inserting stop event

Fig. 4: Belief filtrations for 10 particular sequences

(a) Before inserting stop event (b) After inserting stop event

Fig. 5: Belief filtrations for all interaction sequences

are available then as the first few (1-10) event features are seen, then leveling off. From
fig. 3 it is seen that these all occur before the end of most games. This means that
waiting to observe these first event features is a useful strategy for an AV, but it then
gains little additional information from waiting to observe any more, and may risk the
game ending before making a decision if it waits much longer. Thus, the results suggest
that AVs should not act right away on detecting a road crossing interaction, but rather
wait to observe just the first few informative features before acting (by speeding up or
slowing down). In turn, this suggests that Optimal Stopping based models would be a
fruitful research area for AV controllers for pedestrian interactions. The game theory
model of [4] in the absence of such filtration information has an optimal strategy which
gradually increases the probability of yielding actions over time. This has the same
general form as found here – to wait a while before acting – but future work should
now determine how to fuse the value of information found in this present study with
the values of arrival time and collision avoidance of the previous study. It seems likely
that a combined model will continue to be probabilistic in optimal strategy.



Fig. 6: Residual filtration posterior volatility profile for each of the 10 interactions

Fig. 7: Residual filtration posterior volatility profile for all interactions

The present study is intended as an early proof of concept only and as such makes
several simplifying assumptions. The simple integer sequence indexes used to measure
time here should be replaced in future work with the actual real times of events. The
naive Bayes assumption that all features are independent given the class should be
questioned in future, both in terms of features normalized likelihood strengths and
also their occurrence in time. Some kind of Poisson process may be required to model
their joint distribution over time, as Poisson processes model distributions of discrete
events occurring randomly in continuous time.

We considered the prediction only of the interaction outcome – who wins – rather
than the inference of the underlying latent assertiveness variables θ involved in causing
the outcome. This is an important first step towards inferring θ, and the winners of
historical interaction data might in some data-mining style cases be used as a hard
(integer 0 or 1) approximation for their soft (real 0-1 ranged) θ. Future work should
consider how to make the inference more precisely and also how to infer and separate
the effect of the drivers own assertiveness θdriver from the pedestrians, as ultimate it is
historical and real-time pedestrian θ values which are required to inform the real-time
game theoretic AV controller of [4].

We currently assume that all information is contained by the presence of features in
the filtration, and that their time and sequence of their occurrence within the filtration
is unimportant. More advanced models could consider the non-presence of a feature



within each filtration time interval as a potentially informative alternative feature; and
also consider the presence and absence of motifs of sequences or noisy sequences of
features as additional features.

The features used here were observed and logged by trained human ethologists. It
seems likely that machine vision systems could match their performance for some of
the features, such as macroscopic positions and motions of the agent, but less likely
for others such as eye contact and gestures. The data collection operated in a single
intersection in the UK and it is possible that features may have different likelihoods in
other intersections and countries.

Some non-Bayesians such as Dempster-Shafer theorists still suggest that Bayesian
theory is incapable of reasoning about the distinction between uncertainty -in-the-world
and uncertainty-in-our-beliefs. This is not true, and the use of second-order Bayesian
probability (or ‘meta probability) is a counterexample to the claim. Whilst this is not
the first application of such a method, it is an especially simple and concrete one which
may be useful in rebutting such claims in future. Our use of a hand-crafted statistic st
remains somewhat frequentist and should be replaced by a full Bayesian model at the
second-order level in future work, which might for example employ mixtures of Beta
distributions to model P (P (W |F(t + τ))|F(t)), the expected future beliefs at time
t + τ at wall-clock times t. Optimal stopping algorithms could then be constructed
from expected entropy reductions in these second-order belief distributions given the
extended observation times.
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