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Abstract. This paper proposes a novel approach for the body pose
recognition of multiple persons. Our system takes as input the 3D joint
locations of each person’s skeleton representation, as estimated by Open-
PTrack, an open source project for RGB-D people tracking. The poses of
the upper and lower limbs are computed separately by comparing them
to the ones stored in a pre-recorded database. The two partial poses are
then combined to obtain the full pose of each person on the scene. The
system provides real-time outcomes, is markerless, and does not need
any assumption on the orientation, initial position, or number of persons
on the scene. It can be used as a base for more complex action recog-
nition algorithms, for intelligent surveillance and security devices, or in
human-computer interaction.
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1 Introduction

Human pose and action recognition are fields with a large range of applications,
from surveillance and security purposes, to controlling machines and interacting
with computer-based systems. The identification of a person’s pose eliminates
the necessity to use external input devices, such as mice, keyboards, and joy-
sticks, typically needed to interact with computers or robotic systems [13]. One
of the main advantages of this fact is the possibility to interact with a system
in a hands-free way. As another example, the knowledge of a person’s pose can
be used to increase the level of safety of dangerous machines that require the
operator to behave in specific ways. If an unsafe pose of the operator is recog-
nized, the system can be forced to shut down safely. Finally, action recognition
algorithms usually need to know all the poses assumed in a sequence of frames,
to be able to identify if a specific action is performed. Each action is described
as a temporal sequence of distinct poses.

In order to recognize the current pose of a person, a description of his or
her body joints has to be known. The simplest representation of a human body
is the stick figure, which consists of line segments linked by joints [6]. Figure 1
shows the configuration of the joints used in our algorithm.
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Fig. 1. The human model used in our system. Source: [3].

The estimation of the joint positions may be performed intrusively or non-
intrusively. Intrusive manners include, for example, the usage of optical motion
capture technologies (e.g., BTS Bioengineering, Vicon). These technologies re-
quire human subjects to wear optical markers mounted at the specified limb
positions. The optical markers are tracked by custom-made cameras made of an
Infrared (IR) pass-filter coupled with optical lenses. Although these technologies
produce highly accurate estimation of 3D human pose, they are expensive, re-
quire extensive setup and are intrusive at best, thus making them not suitable for
surveillance or human-computer interaction purposes [4, 6]. Furthermore, they
usually work off-line, requiring manual inputs for association and disambiguation
of the marker positions obtained by each camera. Recently, due to the introduc-
tion of low-cost RGB-D cameras (e.g., the Microsoft Kinect), markerless motion
capture using camera networks has attracted the attention of many researchers
(e.g., Zhang et al. [21], Asteriadis et al. [1], Munaro et al. [11]).

In this paper, we propose a pose recognition system that can use one or
multiple RGB-D cameras to classify the poses of both the upper and lower limbs,
separately, for each person present on the scene. The two partial poses are then
combined to obtain the full pose. The system provides real-time outcomes, is
markerless, and does not need any assumption on the orientation, initial position,
or number of persons on the scene. It can be used as a base for more advanced
action recognition algorithms that also take into account the temporal aspect,
for intelligent surveillance and security devices to know if a person is behaving in
a potentially dangerous way, in human-computer interaction, or for every other
application that might benefit from the knowledge of the current pose of a person
at a higher level with respect to the mere position of each joint. We plan to exploit
our algorithm to perform an automatic ergonomics and posture evaluation for
factory workers via the RULA (Rapid Upper Limb Assessment) method [9]. In
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labor-intensive workplaces, it is important to monitor the employees’ postures
in order to prevent the onset of limb disorders. The maintenance of inadequate
working postures for extended periods of time can lead to serious injuries. By
providing a set of rules to calculate simple numeric scores, the RULA method
allows to identify such inadequate poses. Our algorithm can be exploited to give
a direct feedback to the workers, by computing an on-line automatic evaluation
of such scores.

Our system is based on OpenPTrack, an open source project for RGB-D
people tracking [3]. OpenPTrack is marker-less, multi-person, independent of
background, and does not make any assumption on people appearance and ini-
tial pose. It can work using one or multiple RGB-D cameras and is able to
estimate the 3D joint locations of each person present on the scene, by exploit-
ing OpenPose, a real-time multi-person 2D pose estimation system [2]. Interested
readers are referred to [3] for more detailed information on how the 3D joints are
extracted and the detections from each camera are fused. The 3D joint locations
estimated by OpenPTrack constitute the input of our pose recognition system.
By normalizing the distances between each joint and comparing the obtained
skeletons to the ones of a pre-recorded database of poses, the pose of each per-
son is recognized. The database can contain any number of poses involving arms
only, legs only, or full body, and has to be recorded by one or more persons.

Most of the previous works that take into account the whole body [7, 8, 10, 17],
do not separate the upper and lower-limbs in their analysis. This does not match
our way of identifying other people’s poses as humans. Most of the times, the pose
of a person is described by both their arms and legs, but separately. A person
can be standing, and at the same time waving to a friend. The standing pose
involves the legs only (i.e., the lower limbs), while the waving pose involves the
arms only (i.e., the upper limbs). The full pose of such person is the combination
of the two partial ones. With respect to other approaches that evaluate the pose
of the whole body, our algorithm permits to achieve a computationally lighter
system, and, at the same time, to decrease the number of different poses needed
in the database. As an example, if we were only interested in knowing if a person
has his or her right arm raised, with a “full-body” approach we should record
in the database multiple poses where the person has the right arm raised and is
standing, sitting, etc., or else the right arm raised would be recognized only in
specific situations. Contrarily, by using our approach, the right arm raised can
be detected independently of the legs pose, thus making it possible to record
just a single right arm up pose in the database. Our system is focused on the
instantaneous poses that can form a gesture, and does not take into account
the temporal aspect. The goal is to assign a semantically meaningful label to a
predefined set of poses, and extract this information automatically, in a robust
way, and real-time. This gives the system a higher level knowledge of the person
state, with respect to the mere 3D locations of each joint of the body. One of
the advantages of our system is that it does not require many training data,
compared to machine learning-based ones. We can easily add new poses to the
database in a matter of minutes, by recording just a few pose samples.
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The remainder of the paper is organized as follows. Section 2 reviews the
literature regarding pose, action, and gesture recognition. Section 3 describes our
approach to the pose recognition problem. Section 4 shows some experimental
results. Section 5 presents our conclusions and the possible future works.

2 Related work

Over the past 20 years, a large variety of pose recognition algorithms have been
developed. They differ both in the part of the body that is considered (hands,
arms, full body), and on the technique chosen to obtain the input data (single
or multiple RGB cameras, depth cameras, RGB-D cameras).

Utsumi et al. [16] proposed a hand pose recognition system that used mul-
tiple RGB cameras. They considered the hand’s center of gravity, orientation,
and fingertip points as feature points, and assumed that they were all placed
on a plane that they called the “hand plane”. Ng and Ranganath [12] proposed
another approach to hand gesture recognition. They decomposed the task of
gesture recognition by first identifying the separate hand poses. The pose in-
formation was then incorporated with hand motion to recognize gestures from
image sequences.

Huo et al. [5] presented an approach to capture human motions without
markers. They used feature points for the purpose of pose classification. However,
they limited their analysis to hands and torso only. Song et al. [15] developed a
multi-signal gesture recognition system that attended to both bodies and hands.
They performed 3D upper body pose estimation and hand pose classification
together. However, they assumed the subject to be standing 50 feet away from
the camera.

Wan and Sawada [18] used a vision-based human motion capture system to
obtain a 3D motion measurement of the human upper body, for the purpose of
gesture recognition. The usage of a motion capture system required the user to
wear 7 reflective markers. Sigalas et al. [14] employed a 9 parameter model to
track both arms (4 parameters for each arm) as well as the orientation of the
torso. They used the information to develop a vision-based gesture recognition
system. Weng and Fu [20] chose to use a Time of Flight (ToF) camera as their
input device, and estimated upper body poses. The estimated poses were then
used to recognize a set of six different actions. Van den Bergh et al. [17] proposed
both a 2D system based on silhouettes of the user, and a 3D system based on
visual hulls, to classify a set of human poses. The full body was considered, but
in the 50 pose classes defined, the user was always standing, thus focusing the
analysis on the upper body pose.

Li et al. [8] presented a method to recognize human actions that used silhou-
ettes from sequences of depth maps. They focused on a small set of representative
3D points sampled from the depth map, and then compared the obtained data to
a database of 20 actions performed by multiple subjects. Munaro et al. [10] pro-
posed a system for real-time human action recognition based on 3D motion flow
estimation. They used colored point clouds as input, and classified 15 different
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actions. Kim et al. [7] developed human pose estimation and gesture recognition
algorithms that used only depth information. Several key frames were extracted
from the input data, and then compared with key frames of registered gestures.
However, they assumed that all gestures were made toward the sensor within
the human pose estimation range (±30 degrees). Wang et al. [19] proposed an
approach to recognize an action from video frames. They first estimated the
joint locations, then grouped the estimated joints into five body parts (e.g. left
arm, etc.), and finally applied data mining techniques in the spatial domain to
obtain sets of distinctive co-occurring spatial configurations of body parts. Their
approach on the separation of the different body parts is the closest to our work.
However, they limited their analysis to videos only, and the computation time
of their algorithm was not specified.

3 System design

Figure 2 shows an overview of the proposed system. It can be split in two parts: i)
manipulation of the estimated joints, and ii) recognition of the upper and lower-
limbs poses. The manipulation is necessary for allowing the system to recognize
the pose of people with different body characteristics and oriented at different
angles with respect to the world reference. The recognition is accomplished by
comparing the manipulated joint locations to the ones recorded for each pose in
the database. In particular, the recognition of the current upper-limbs pose of a
person is achieved by calculating the Euclidean distances between the links that
describe the arms and each upper-limbs pose present in the database. Similarly,
the lower-limbs pose is recognized by calculating the distances between the links
that describe the legs and each lower-limbs pose in the database. The final output
of our system is a label describing the current upper-limbs pose of each person
(if a match is found), the current lower-limbs pose (if a match is found), or a
combination of the two (if both upper-limbs and lower-limbs matches are found
at the same time).

Normalization and 
Frontal-view 
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Skeleton Joints

Upper-body Pose 
Recognition

Lower-body Pose 
Recognition

Partial Poses 
Fusion

Upper-body
Pose ID
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Body Pose 
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Fig. 2. System overview. The 3D joint locations obtained from OpenPTrack are nor-
malized and rotated in order to have a frontal view of each person. The arms and the
legs joints are then compared, separately, with the corresponding poses recorded in the
database. The two recognized poses are merged to obtain the final result.
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3.1 Skeleton manipulation

The output of the pose estimation system is a set of skeleton tracks for each
person on the scene. For a specific frame, we can define the skeleton track related
to person k as:

Sk = {J0,J1, . . . ,J14}
where J0, . . . ,J14 are the 3D coordinates of the joints that describe the human
model depicted in Figure 1. The set of links L that connect each pair of joints
is defined as:

L = {l0, l1, . . . , l13}
= {(J14,J1), (J1,J2), (J2,J3), (J3,J4), (J1,J5),

(J5,J6), (J6,J7), (J14,J8), (J8,J9), (J9,J10),

(J14,J11), (J11,J12), (J12,J13), (J1,J0)}

where (J i,J j) indicates the vector connecting joint J i to joint J j .
Since each person can have different height and limb lengths, as well as a

different orientation with respect to the origin, the skeletons have to be normal-
ized and rotated. The final output of this process is a set of normalized skeleton
tracks in which each segment has length equal to 1 and whose orientation is
always the same.

Normalization The first step is the normalization of each vector in L. Each
link length is normalized, while maintaining its original direction. The normal-
ized skeleton track is constructed by starting from the chest joint (J14) and
connecting the normalized vectors.

The result of the normalization process is a set of normalized skeleton tracks
(one for each person k) in which each link has length equal to 1:

Sk =
{
J0,J1, . . . ,J14 | ∀(i, j) ∈ L, ‖J i − J j‖ = 1

}
where J0, . . . ,J14 are the new 3D coordinates of the joints after the normaliza-
tion process.

Frontal-view warping The normalized skeleton can now be rotated in order
to obtain a frontal view, independently on the real orientation of the person.

The orientation o of each person is computed as the normalized cross product
between the vector connecting the chest joint (J14) to the left shoulder (J5),
and the vector connecting the chest joint (J14) to the right shoulder (J2):

o =
(J14 − J5)× (J14 − J2)

‖(J14 − J5)× (J14 − J2)‖
Once the orientation of the person is known, the angle α between the ori-

entation and the x axis can be computed as the arccosine of the dot product
between the orientation o and the x axis unit vector:

α = arccos(o · (1, 0, 0)T )
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By rotating the normalized skeleton of an amount equal to −α, and trans-
lating each joint J i of an amount equal to −J14, we obtain the frontal view of
each person k, with the chest joint always located on the origin (0, 0, 0):

Ŝk =

Ĵ i =

 cosα sinα 0
− sinα cosα 0

0 0 1

 (J i − J14), 0 ≤ i ≤ 14


The result is a set of normalized and conveniently rotated and translated

skeleton tracks Ŝk.

3.2 Pose recognition

Of the 14 links describing each skeleton, only 4 are taken into account in the
pose recognition algorithm. Such links are the ones connecting the elbows to the
wrists (l3 = (J3,J4) for the right arm and l6 = (J6,J7) for the left arm) for
the upper limbs, and the ones connecting the knees to the ankles (l9 = (J9,J10)
for the right leg and l12 = (J12,J13) for the left leg) for the lower limbs. The
signatures for the upper and lower-limbs poses, defined as the links taken into
account for the recognition of the poses, are respectively:

Σ̂u =
{
l̂3, l̂6

}
, Σ̂l =

{
l̂9, l̂12

}
The database of recorded poses is defined as:

D = Du +Dl = {Σ∗
1,Σ

∗
2, . . . ,Σ

∗
n}

where each Σ∗ ∈D can be the signature of an upper-limbs pose or a lower-limbs
pose, and n is the number of recorded poses. Du indicates the subset containing
all the nu upper-limbs poses, and Dl the one containing all the nl lower-limbs
poses (n = nu + nl).

The upper-limbs pose scores are computed by calculating the Euclidean dis-
tances ru,i between the vectors of the upper-limbs signature Σ̂u and the cor-
responding vectors describing each upper-limbs pose Σ∗

i = {l∗3,i, l∗6,i} ∈ Du

in the database. Similarly, the lower-limbs pose scores are computed by cal-
culating the Euclidean distances rl,j between the vectors of the lower-limbs

signature Σ̂l and the corresponding vectors describing each lower-limbs pose
Σ∗

j = {l∗9,j , l∗12,j} ∈Dl in the database:

∀Σ∗
i ∈Du, ru,i = {‖l̂3 − l∗3,i‖, ‖l̂6 − l∗6,i‖}

∀Σ∗
j ∈Dl, rl,j = {‖l̂9 − l∗9,j‖, ‖l̂12 − l∗12,j‖}

This yields two scores for each upper-limbs pose (ru,i(0), ru,i(1)), and two
scores for each lower-limbs pose (rl,j(0), rl,j(1)). The final scores r∗u,i, r

∗
l,j are

selected as the maximum values between the two obtained:

r∗u,i = max
ru,i

{ru,i(0), ru,i(1)}

r∗l,j = max
rl,j

{rl,j(0), rl,j(1)}
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If at least one pose i exists such that r∗u,i < threshold, then the upper-limbs
pose is selected as the one that gives the lowest score. If no pose such that
r∗u,i < threshold is found, then the upper-limbs pose is labeled as unknown.
Similarly, if at least one pose j exists such that r∗l,j < threshold, then the lower-
limbs pose is selected as the one that gives the lowest score. If no pose such
that r∗l,j < threshold is found, then the lower-limbs pose is labeled as unknown.
The final pose of each person can be the recognized upper-limbs pose (if there
is any), the recognized lower-limbs pose (if there is any), or the combination of
the two (if both upper and lower-limbs poses are found). Figure 3 shows the
output of our system. In this specific case the upper-limbs pose is recognized
as arms down, the lower-limbs pose as standing, and the final pose is labeled as
standing with arms down.

Fig. 3. Skeleton joints of a person and the corresponding body pose label, as shown
in our system. The upper-limbs pose is recognized as arms down, and the lower-limbs
pose as standing. The system provides real-time output.

The availability of accurate 3D joint positions makes it possible to classify
poses without the need of machine learning methods. The main advantage of
this fact is that the typical amount of training data of machine learning-based
methods is not needed. This means that the addition of a new pose in the
database is an extremely simple task. It requires just a single person to record
few pose samples that describe the new pose.

4 Experiments

For our experiments we used a database of 8 poses (6 for the upper limbs and 2
for the lower limbs) containing:

– pose 0 ∈Du: arms down
– pose 1 ∈Du: arms up
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– pose 2 ∈Du: right arm up
– pose 3 ∈Du: left arm up
– pose 4 ∈Du: right arm pointing
– pose 5 ∈Du: right arm grasping
– pose 6 ∈Dl: standing
– pose 7 ∈Dl: squatting

The difference between pose 4 (right arm pointing) and pose 5 (right arm grasp-
ing) is that in the first one the right arm should be approximately parallel to
the floor, while in the second one the right arm should be slightly bent towards
the floor.

Our test setup consists of 3 Kinects, but, in general, any number of Kinects
can be used. The Kinects are located at three corners of an area of approximately
6 by 4 meters, and connected to 3 PCs which are placed in a network. Two per-
sons have been asked to assume some of the poses present in the database,
simultaneously. For every frame in which the persons are assuming one of the
recorded poses, the recognized pose has been compared to the groundtruth ob-
tained by manually labeling each pose. The performance of our system has been
evaluated by calculating the values of precision P , accuracy A, and recall R for
each pose, defined as:

P =
TP

TP + FP
, A =

TP + TN

TP + TN + FP + FN
, R =

TP

TP + FN

where TP is the number of true positives, TN the number of true negatives, FP
the number of false positives, and FN the number of false negatives.

The precision index does not take into account the number of false negatives.
It can assume high values even if the poses are not recognized most of the times,
if the number of false positives is low. On the other hand, the accuracy index
takes into account both the number of true positives and of true negatives. It
can still assume high values even if the poses are not recognized most of the
times, if the number of true negatives is high. Finally, the recall index describes
the ratio between the number of times the pose is correctly recognized and the
actual number of times the pose has been assumed. Hence, the recall is the most
significant indicator for evaluating the performance of our system.

First experiment In the first experiment the persons assumed all the different
upper-limbs poses, while standing. Table 1 shows the confusion matrix obtained.
An overall precision of 0.956 is achieved, with an accuracy of 0.966 and a recall
of 0.9252.

We can see that the most critical poses are pose 2 (right arm up) and pose
5 (right arm grasping). The poor recognition of pose 2 was caused by an error
of the skeletal tracker: the left arm of one of the two persons was not correctly
estimated. On the other hand, while pose 5 was correctly recognized for one
person, for the second one it was sometimes mistaken with pose 0 (arms down).
This happened because, when asked to switch from right arm pointing to right -
arm grasping, one of the persons bent the arm way more than expected (> 45
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Table 1. Confusion matrix of the first experiment. The last three columns indicate
the values of precision, accuracy, and recall for each assumed pose.

Groundtruth
pose 0 pose 1 pose 2 pose 3 pose 4 pose 5 pose 6 P A R

pose 0 150 0 0 1 0 76 0 0.6608 0.9252 1

pose 1 0 156 0 0 0 0 0 1 1 1

pose 2 0 0 121 0 0 0 0 1 0.9524 0.7118

pose 3 0 0 0 197 0 0 0 1 0.9835 0.9206

pose 4 0 0 0 0 109 0 0 1 0.9893 0.9083

pose 5 0 0 0 0 11 143 0 0.9286 0.9146 0.6500

pose 6 0 0 0 0 0 0 1030 1 1 1

unknown 0 0 49 17 0 0 0

degrees). In such case, the pose was more similar to arms down, rather than
right arm grasping. This fact also explains the low precision value achieved for
pose 0.

Second experiment In the second experiment the persons varied both the
upper and lower-limbs poses, alternatively. Table 2 shows the confusion matrix
obtained. An overall precision of 1 is achieved, with an accuracy of 0.9243 and
a recall of 0.8107. This value of the precision index is due to the absence of false
positives in the experiment.

Table 2. Confusion matrix of the second experiment. The last three columns indicate
the values of precision, accuracy, and recall for each assumed pose.

Groundtruth
pose 0 pose 2 pose 3 pose 6 pose 7 P A R

pose 0 90 0 0 0 0 1 1 1

pose 2 0 368 0 0 0 1 0.9577 0.9064

pose 3 0 0 316 0 0 1 0.9042 0.7861

pose 6 0 0 0 454 0 1 1 1

pose 7 0 0 0 0 228 1 0.7595 0.5135

unknown 0 38 86 0 216

The most critical pose is pose 7 (squatting). The poor results were due to
difficult conditions for the tracking system. The squatting position is a partic-
ularly challenging one, because the legs are partially occluded. For the second
person, who could be seen better by the camera network, the pose was correctly
recognized, while, for the first person, the tracker gave a wrong estimation of the
legs position, thus invalidating the pose recognition process. As of pose 3 (left -
arm up), the lower recall value, with respect to other poses, is due to intra-class
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variability issues. When asked to raise the left arm, one of the persons kept the
arm lower than the other, and the recognition of the pose failed in some frames.

Figure 4 shows four of the poses assumed in the experiments. The poses
were correctly classified even when the persons were partially occluded, thanks
to the presence of multiple cameras. In Figure 4a and 4b the two persons were
asked to point (a) and grasp (b) an imaginary object with the right hand, while
standing. In Figure 4c they were asked to simply raise the right arm, whereas in
Figure 4d they were asked to squat, while keeping the right arm raised. In this
last case, our system correctly recognized the pose assumed by person 2 (green
skeleton) as squatting with right arm up, while it partially failed for person 1
(brown skeleton). This was due to a wrong estimation of the joints describing
the legs of the person. Still, the upper-limbs pose was correctly recognized as
right arm up.

Fig. 4. Examples of correct (a, b, c) and partially correct (d) classification of some of
the poses assumed during the experiments: (a) standing with right arm pointing, (b)
standing with right arm grasping, (c) standing with right arm up, (d) squatting with -
right arm up. The multi-camera system allows to correctly recognized the poses even
when the persons are partially occluded.

The outcomes of the experiments have shown that our system produces accu-
rate results in most of the situations. Even visually similar but conceptually dif-
ferent poses, like right arm pointing and right arm grasping, can be recognized.
The main source of errors in the pose recognition process came from the wrong
estimations of the 3D joint locations in particularly challenging conditions.
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5 Conclusions and future works

The idea to decouple the recognition of the upper and lower limbs poses has been
proven to give promising results. Nevertheless, our pose recognition algorithm is
still a work in progress. In the future we plan to develop our system by including
more links in both the upper and lower-limbs signatures, thus taking into account
also the links connecting the shoulders to the elbows and the hips to the knees.
In such case, the new signatures will be:

Σ̂u =
{
l̂2, l̂3, l̂5, l̂6

}
, Σ̂l =

{
l̂8, l̂9, l̂11, l̂12

}
Increasing the dimension of the signatures will make it possible to recognize

a larger variety of poses. With such configuration it will be feasible to register
a complex database of poses, more similar to the natural ones that we assume
everyday. An evaluation of the differences in robustness before and after the
modification will also be necessary. The possibility to implement such system is
strongly dependent on the reliability of the skeletal tracker. Since the number of
links considered for the recognition is increasing, also the chance to have wrong
joint estimations rises. Another challenging aspect is the intra-class variability
in the human poses, since “raising the arms” can mean slightly different poses
for different persons, i.e., arms straight up, or half-way up, etc. A low number
of links for the recognition of the pose behaves like a filter that smooths the
intra-class variability. Thus, increasing the number of links is likely to produce
a higher number of false negatives.

After finding the best trade-off between the accuracy of the system and the
number of evaluated links, and developing a more sophisticated pose recognition
algorithm, we plan to use it as input for an action recognition system. The
action recognition algorithm will take into account also the time component, by
analyzing sequences of poses, and not only single frames.
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