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Abstract

This paper describes a personal service robot developed
for assisting a user in his/her daily life. One of the impor-
tant aspects of such robots is the user-friendliness in com-
munication; especially, the easiness of user’s assistance to
a robot is important in making the robot perform various
kinds of tasks. Our robot has the following three features:
(1) interactive object recognition, (2) robust speech recog-
nition, and (3) easy teaching of mobile manipulation. The
robot is applied to the task of fetching a can from a distant
refrigerator.

1 Introduction

Personal service robot is one of the promising areas to
which robotic technologies can be applied. As we are fac-
ing the “aging society”, the need for robots which can help
human in various everyday situations is increasing. Possi-
ble tasks of such robots are: bringing a user-specified object
to the user in the bed, cleaning a room, mobile aid, social
interaction.

Recently several projects on personal service robots are
going on. HERMES [2, 3] is a humanoid robot that can
perform service tasks such as delivery using vision- and
conversation-based interfaces. MORPHA project [1] aims
to develop two types of service robot: robot assistant for
household and elderly care and manufacturing assistant, by
integrating various robotics technologies such as human-
machine communications, teaching methodologies, motion
planning, and image analysis. CMU’s Nursebot project [10]
has been developing a personal service robot for assisting
elderly people in their daily activities based on communica-
tion skills; a probabilistic algorithm is used for generating a
timely and use-friendly robot behaviors [9].

One of the important aspects of such robots is the user-
friendliness. Since personal service robots are usually used
by a novice, they are required to provide easy interaction
methods to users. Since personal service robots are ex-
pected work in various environments and, therefore, it is
difficult to give a robot a complete set of required skills and
knowledge in advance; so teaching the robot on the job is
indispensable. In other words, user’s assistance to a robot

robust
speech recognition

interactive
object recognition

easy teaching of
mobile manipulation

Fig. 1: Features of our personal service robot.

is necessary and should be done easily.
We are developing a personal service robot which has

the following three features (see Fig. 1):
1. Interactive object recognition.
2. Robust speech recognition.
3. Easy teaching of mobile manipulation.

The following sections will describe these features and ex-
perimental results.

The current target task of our robot is fetching a can or
a bottle from a distant refrigerator. The task is roughly di-
vided into the following: (1) movement to/from the refrig-
erator, (2) manipulation of the refrigerator and a can, (3)
recognition of a can in the refrigerator. In the third task, a
verbal interaction between the user and the robot is essential
to the robustness of the recognition process.

2 Interactive Object Recognition
This section explains our interactive object recognition
method which actively uses the dialog with a user [6].

2.1 Registration of Object Models

The robot registers models of objects to be recognized in
advance. A model consists of the size, representative colors
(primary features), and secondary features (the color, the
position, and the area of uniform regions other than repre-
sentative colors). Secondary features are used only when
there are multiple objects with the same representative col-
ors. For model registration, the robot makes a “developed
image” by mosaicing images captured from eight directions
while the robot rotates an object. Fig. 2 shows acquisition
of developed images for two types of objects.
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(a) Original image (b) Piece image (c) Developed image
top : can bottom : square type PET bottle

Fig. 2: Procedure for constructing a developed image

(a) Example of interval

(c) The other similar
color regions

(b) Segmented image

(d) Features
In (d), top line: representative color, middle line: color of secondary
feature 1, bottom line: color of secondary feature 2

Fig. 3: Extraction of features

Since primary and secondary features depend on the
viewing direction, we determine intervals of directions
where similar features are observed. In the case of Fig.
3(a), for example, two intervals, I1 (white) and I2 (blue),
are determined. If two objects are not distinguishable for
an interval, it is further divided into subintervals using sec-
ondary features. Candidates for secondary features are ex-
tracted as follows. The robot first segments a developed
image into uniform regions (see Fig. 3(b)) to extract pri-
mary features used for first-level intervals. The robot then
extracts uniform color regions other than representative col-
ors (see Fig. 3(c)) and records the size, the position, and the
color of such regions as candidates for secondary features
(see Fig. 3(d)). Secondary features of an object are incre-
mentally registered to its model every time another object
having a similar feature and being undistinguishable in sev-
eral viewing directions is added to the database.

2.2 Object Recognition

The robot first extracts candidate regions for objects
based on the object color which is specified by a user or
is determined from a user-specified object name. Then it
determines the type of each candidate from its shape; for
example, a can has a rectangular shape in an image.

For each candidate, the robot checks if its size is compa-
rable with that of the corresponding object model. If no sec-
ondary features are registered in the model, the recognition
finishes with success. Otherwise, the robot tries matching
using secondary features. Fig. 4 shows an example match-
ing process. Fig. 4(c) shows two candidates are found using

(a) input image (b) candidate region

(c) can candidates. (d) recognition result.
(black: secondary feature)

Fig. 4: Matching with object models.

only the primary feature (representative color). Using a sec-
ondary feature, the two candidates are distinguished.

Since the lighting condition in the recognition phase may
differ from that in the learning phase, we have developed a
method for adjusting colors based on the observed color of
a reference object such as the door of a refrigerator [7].

2.3 Recognition Supported by Dialog

If the robot failed to find a target object, it tries to obtain
additional information by a dialog with the user. Currently,
the user is supposed to be able to see the refrigerator through
a remote display. We consider the following failure cases:
(1) multiple object are found; (2) no objects are found but
candidate regions are found; (3) no candidate regions are
found due to (a) partial occlusion or (b) color change.

In this dialog, it is important for the robot to generate
good questions which can retrieve an informative answer
from the user. We here explain case (3)-(a) in detail. In this
case, the robot asks the user an approximate position of the
target like: “I have not found it. Where is it ?” Then the user
may answer: “It is behind A” (A is the name of an occlud-
ing object). Using this advice, the robot first searches for
object A in the refrigerator (see Fig. 5(b)). Then it searches
both sides of the occluding object for regions of the repre-
sentative color of the target object and extracts its vertical
edge corresponding to the object boundary (see Fig. 5(c)).
Finally the robot determines the position of edges on the
boundary of the other side using the size of the target object
(see Fig. 5(d)).

3 Robust Speech Recognition

Many existing dialog-based interface systems assume that
a speech recognition (sub)system always works well. How-
ever, since the dialog with a robot is usually held in environ-
ments where various noises exist, such an assumption is dif-
ficult to be made. There is another problem that a user, who



(a) input image. (b) occluding object.

(c) region of target object. (d) recognition result.

Fig. 5: Recognition of occluded object.

is usually not an expert of robot operations, most probably
uses words which are not registered in the robot’s database.
Therefore, the dialog system has to be able to cope with
speech recognition failure and unknown words [11].

3.1 Overview of the Speech Recognition

We use IBM’s ViaVoice as a speech recognition engine.
Fig. 6 shows an overview of our speech recognition system.
We first apply a context-free grammar (CFG)-based recog-
nition engine to the voice input. If it succeeds, the recog-
nition result is sent to an image recognition module. If it
fails to identify some words due to, for example, noise or
unknown words, the input is then processed by a dictation-
oriented engine, which generates a set of probable candidate
texts. Usually in a candidate text, some words are identified
(i.e., determined to be registered ones) and the others are
not. So the unidentified words are analyzed to estimate their
meanings, by considering the relation to the other identified
words. For example, if an unidentified word has a similar
pronunciation to a registered word, and if the category (e.g.,
the part of speech) is acceptable considering the neighbor-
ing identified words, the robot supposes that the unidenti-
fied word is the registered one, and generates a question to
the user to verify the supposition. The robot uses proba-
bilistic models of possible word sequences and updates the
model through the dialog with each specific user.

3.2 Estimating the Meaning of Unidentified
Words

We consider that an unidentified word arises in the fol-
lowing three cases: (1) a known word is erroneously recog-
nized; (2) an unknown word is uttered which is a synonym
of a known word; (3) noise is erroneously recognized as a
word. In addition, we only consider the case where one or
consecutive two unidentified word(s) exist in an utterance.
The robot evaluates the first two cases (erroneous recogni-
tion or unknown word) and selects the estimation with the
highest evaluation value. If the highest value is less than
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Fig. 6: Speech recognition system.

State S

Identified word
     Cn  Wn

Unidentified word
      C   W

Pc(C | S)

Pw(W | S)

Pc-p(Cp | C)

Pw-p(Wp | W)
Pc-n(Cn | C)

Pw-n(Wn | W)

Identified word
     Cp  Wp

Fig. 7: Estimation of category C and word W

a certain threshold, the unidentified word is considered to
come from noise.

The problem of estimating the meaning of an uniden-
tified word is formulated as finding the registered word W
with the maximum probability, given state S, context γ, and
a text string R generated by the dictation-oriented engine.
State S indicates a possible state in the dialog such as the
one where the robot is waiting for the user’s first utterance
or the one where it is waiting for an answer to its previ-
ous question like “which one shall I take ?” Context γ is
identified words before and after an unidentified one under
consideration.

Fig. 7 illustrates the estimation of category C and word
W using the probabilistic models:

• Pc−p(Cp|C) is the probability that Cp is uttered just
before the utterance of C.

• Pc−n(Cn|C) is the probability that Cn is uttered just
after the utterance of C.

• Pw−p(Wp|W ) is the probability that Wp is uttered just
before the utterance of W .

• Pw−n(Wn|W ) is the probability that Wn is uttered
just after the utterance of W .

For case (1) (i.e., erroneous recognition of a registered
word), we search for the word Ŵ which is:

Ŵ = arg max
W

P (W |S, γ, R). (1)

For case (2) (i.e., use of a synonym of a registered word),
we search for the word Ŵ which is:

Ŵ = arg max
W

P (W |S, γ). (2)



We here further examine eq. (1) only due to the space limi-
tation. Eq. (1) is rewritten as:

P (W |S, γ, R)=
∑

C{P (W |S, γ, C)P (C|S, γ)}P (R|W,S, γ)
∑

W P (W,R|S, γ)

�
∑

C{P (W |S, γ, C)P (C|S, γ)}P (R|W )
∑

W P (W,R|S, γ)
(3)

where
∑

C indicates the summation for categories C whose
probability P (C|S, γ) is larger than a threshold, and

∑
w

indicates the summation for words W belonging to the cat-
egories. Eq. (3) is obtained by considering that a recognized
text R depends almost only on word W ; P (R|W ) is called
a pronunciation similarity.

An example of successful recognition of an uniden-
tified word is as follows. A user asked the robot to
take a blue PET bottle, by uttering “AOI (blue) PETTO
BOTORU (PET bottle) WO TOTTE (take)”. The robot
however first recognized the utterance as “OMOI KUU
TORABURU WO TOTTE”. Since this includes unidenti-
fied words, the robot estimates their meanings using the
above-mentioned method, and reached the conclusion that
“OMOI” means “AOI” and “KUU TORABURU” means
“PETTO BOTORU”.

The recognition result of unidentified words are fed back
to the system to update the database and the probabilistic
models [11].

4 Easy Teaching of Mobile Manipulation
Usually service robots have to deal with much wider range
of tasks (i.e., operations and environments) than industrial
ones. An easy, user-friendly teaching method is, therefore,
desirable for such service robots. Among previous teach-
ing methods, direct methods (e.g., the one using a teaching
box) are intuitive and practical but requires much user’s ef-
fort, while indirect methods (e.g., teaching by demonstra-
tion [5, 4]) are easy but still needs further improvement of
the robot’s ability for deployment.

We, therefore, use a novel teaching method for a mo-
bile manipulator which exists in between the above two ap-
proaches. In the method, a user teaches the robot a nominal
trajectory of the hand and its tolerance to achieve a task. In
this teaching phase, the user does not have to explicitly con-
sider the structure of the robot but teaches the movement of
the hand in the object-centered coordinates. The tolerance
plays an importance role when the robot generates an actual
trajectory in the subsequent playback phase; although the
nominal trajectory may be infeasible due to the structural
limitation, the robot can search for a feasible one within the
given tolerance. Only when the robot fails to find the fea-
sible trajectory, the robot plans a movement of the mobile
base; that is, the redundancy provided by the mobile base
acts as another tolerance in trajectory generation. Since
the robot autonomously plans a necessary movement of the
base, the user does not have to consider whether the move-
ment is needed. The teaching method is well intuitive and
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Fig. 8: A nominal trajectory for
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Fig. 9: Coordinates on seg-
ments.

does not require much effort from a user. In addition, it does
not assume a high recognition and inference ability of the
robot because the nominal trajectory given by the user has
much information for planning feasible motions; the robot
does not need to generate a feasible trajectory from scratch.

The following subsections explain the teaching method,
using the task of opening the door of a refrigerator as an
example.

4.1 Nominal Trajectory

A nominal trajectory is the trajectory of the hand pose
(position and orientation) in a 3D object-centered coordi-
nate system. Among feasible trajectories to achieve the
task, a user arbitrarily selects one, which can easily be spec-
ified by the user. To simplify the trajectory teaching, we
currently set a limitation that a trajectory of hand position
is composed of circular and/or straight line segments.

Fig. 8 shows a nominal trajectory for opening a door,
which is composed of straight segments AB and BC and cir-
cular segments CD and DE set on some horizontal planes;
on segment CD, the robot roughly holds the door, while on
segment DE, the robot pushes it at a different height. The
axes in the figure are those of the object-centered coordi-
nates. On the two straight segments, the hand orientation is
parallel to segment BC; on circular segment CD, the hand is
aligned to the radial direction of the circle at each point; on
circular segment DE, the hand tries to keep aligned to the
tangential direction of the circle.

4.2 Tolerance

A user-specified trajectory may not be feasible (exe-
cutable) due to the structural limitation of the manipulator.
In our method, therefore, a user gives not only a nominal
trajectory but also its tolerance. A tolerance indicates ac-
ceptable deviations from a nominal trajectory to perform a
task; if the hand exists within the tolerance over the entire
trajectory, the task is achievable. A user teaches a toler-
ance without explicitly considering the structural limitation
of the robot. Given a nominal trajectory and its tolerance,
the robot searches for a feasible trajectory.
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Fig. 10: An example tolerance for opening the door.

A user sets a tolerance to each straight or circular trajec-
tory using a coordinate system attached to each point on the
segment (see Fig. 9). In these coordinate systems, a user
can teach a tolerance of positions relatively intuitively as a
kind of the width of the nominal trajectory. Fig. 10 shows
an example of setting a tolerance for circular segment CD,
which is for opening the door, in Fig. 8.

4.3 Generating Feasible Trajectories

The robot first tries to generate a feasible trajectory
within a given tolerance. Only when the robot fails to find a
feasible one, it divides the trajectory into sub-trajectories
such that each sub-trajectory can be performed without
movement of the base; it also plans the movement between
performing sub-trajectories.

4.3.1 Trajectory Division Based on Feasible Regions

The division of a trajectory is done as follows. The robot
first sets via points on the trajectory with a certain interval
(see Fig. 11). When generating a feasible trajectory, the
robot repeatedly determines feasible poses (positions and
orientations) of the hand at these points (see Sec. 4.3.2).

For each via point, the robot calculates a region on the
floor in the object coordinates such that if the mobile base
is in the region, there is at least one feasible hand pose. By
calculating the intersection of the regions, the robot deter-
mines the region on the floor where the robot can make the
hand follow the entire trajectory. Such an intersection is
called a feasible region of the task (see Fig. 12).

Feasible regions are used for the trajectory division. To
determine if a trajectory needs division, the robot picks up
one via point after another along the trajectory and repeat-
edly updates the feasible region. If the size of the region
becomes less than a certain threshold, the trajectory is di-
vided at the corresponding via point. This operation contin-
ues until the endpoint of the trajectory is processed. Fig. 13
shows example feasible regions of the trajectory of opening
the door shown in Fig. 8. The entire trajectory is divided
into two parts at point V ; two corresponding feasible re-
gions are generated.
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Fig. 11: Via points.
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Fig. 12: Calculation of a feasible
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Fig. 13: Example feasible regions.
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Fig. 14: On-line generation of a feasible trajectory.

4.3.2 On-line Trajectory Generation

A feasible trajectory is generated by iteratively searching
for feasible hand poses for a sequence of via points. This
trajectory generation is performed on-line because the rel-
ative position between the robot and manipulated objects
varies each time due to the uncertainty in the movement of
the robot base. The robot estimates the relative position
before trajectory generation. The previously calculated tra-
jectories can be, however, used as guides for calculating the
current trajectory; all trajectories are expected to be simi-
lar to each other as long as the uncertainty in movement is
reasonably limited.

Fig. 14 illustrates how a feasible trajectory is generated.
In the figure, small circles indicate via points on a given
nominal trajectory; two dashed lines indicate the boundary
of the tolerance; the hatched region indicates the one where
the robot cannot take the corresponding hand pose due to
the structural limitation. A feasible trajectory is generated
by searching for a sequence of hand poses which are in the
tolerance and near to the given via points (two squares in-
dicate selected via points). The bold line in the figure in-
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Fig. 15: Our service robot.
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Fig. 16: Obstacle avoidance.
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Fig. 17: Fetch a can from a refrigerator.

dicates the generated feasible trajectory. In the actual tra-
jectory generation, the robot searches the six dimensional
space of hand pose (position and orientation) for the feasi-
ble trajectory.

During executing the generated trajectory, it is some-
times necessary to estimate the object position. Currently,
we manually give the robot a set of necessary sensing oper-
ations for the estimation.

5 Manipulation and Motion Experiments

Fig. 15 shows our personal service robot. The robot is a
self-contained mobile manipulator with various sensors. In
addition to the above-mentioned functions, the robot needs
an ability to move between a user and a refrigerator. The
robot uses the laser range finder (LRF) for detecting ob-
stacles and estimating the ego-motion [8]. It uses the LRF
and vision for detecting and locating refrigerators and users.

Fig. 16 shows a collision-avoidance movement of the robot.
Fig. 17 shows snapshots of the operation of fetching a can
from a refrigerator to a user.

6 Summary

This paper has described our personal service robot. The
feature of the robot is a user-friendly human-robot inter-
faces including interactive object recognition, robust speech
recognition, and easy teaching of mobile manipulation.

Currently the two subsystems, object and speech recog-
nition and teaching of mobile manipulation, are imple-
mented separately. We are now integrating these two sub-
systems into one prototype system for more intensive ex-
perimental evaluation.

Acknowledgment

This research is supported in part by Grant-in-Aid for
Scientific Research from Ministry of Education, Culture,
Sports, Science and Technology, and by the Kayamori
Foundation of Informational Science Advancement.

References
[1] Morpha project, http://www.morpha.de/.
[2] R. Bischoff. Hermes – a humanoid mobile manipulator for

service tasks. In Proc. of FSR-97, pp. 508–515, 1997.
[3] R. Bischoff and V. Graefe. Dependable multimodal commu-

nication and interaction with robotic assistants. In Proc. of
ROMAN-2002, pp. 300–305, 2002.

[4] M. Ehrenmann, O. Rogalla, R. Zöllner, and R. Dillmann.
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