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ABSTRACT. This paper addresses a novel algorithm called Generalized Hybrid Evolution-
ary Coverage Solver (GHEC-Solver) for solving the coverage problem. We extend and
generalize the concept of the Art Gallery Problem to accommodate several applications,
ranging from a set of security camera placements to the robot scanning positions for
covering the entire environment. We first simplify the environment map into a polygon
and build guard candidates utilizing the topological features. The polygon arrangement
of each guard visibility is established and an optimization based on a non-unicost Set
Covering Problem (SCP) is performed to obtain an optimal set of the guard candidates.
Unlike the original Art Gallery Problem, our algorithm takes account of the cost of each
guard imposed from the environment or the problem settings (such as vertex guards, in-
terior guards, and cost function-based guards) directly in the non-unicost SCP, so that
it can cope with many classes of the coverage problem. The algorithm then alternates
the non-unicost SCP and a probabilistic evolutionary optimization to obtain the optimal
guards. Several tests using various environment map-based polygons are conducted, and
the results support the robustness of our proposed algorithm.

Keywords: Sensor coverage, Robot guards, Set Covering Problem, Evolutionary opti-
mization, Surveillance

1. Introduction. Suppose we want to put several surveillance cameras to see the entire
building. Due to the budget limitation, we also want to reduce the number of cameras
as minimum as possible. The problem now becomes how many cameras should be used
and where it should be placed. This question is basically the essence of the Art Gallery
Problem.

The Art Gallery Problem [1], as appearing in several textbooks (e.g., [2-4]), is a classical
problem which inquires the minimum number of guards which should be placed in a
polygon ensuring the full coverage of the entire polygon. It is closely related to the sensor
coverage and sensor placement problem, so we are not surprised for finding several works
which blend both problems into one topic, such as [5-8].

There are a lot of practical cases in the real world which rely on the Art Gallery or
sensor coverage problem and its variants. The surveillance camera placement above is
one example. The other related cases are how to determine the efficient sensor placement
and coverage problem in a sensor network (e.g., [9-11]) and multi agent deployment for
the building inspection [12].
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922 I. ARDIYANTO AND J. MIURA

Each problem above has a unique characteristic. For instance, the cameras can be
located at any place of the building, even on the edge of the walls or the corners, depending
on the camera model. Yet, there are some occasions that we prefer to put the camera, such
as the omnidirectional camera, on the middle of the room’s ceiling. While those problems
are usually solved for each case (such as vertex guards [13], edge guards, and interior
guards [14]), here we aim to establish a generalized framework which can be applied for
every case which includes the placement preferences.

1.1. Our contributions. Our objective is to develop a unified framework for solving the
coverage problem in different kinds of settings and applications as mentioned in the be-
ginning of this paper, by generalizing the original Art Gallery Problem. At the same time,
we want to overcome the drawback of the existing methods. Here we propose Generalized
Hybrid Evolutionary Coverage Solver (GHEC-Solver) to achieve those purposes.

Main contributions of this work are three-fold. First, our approach serves a generalized
and comprehensive framework for the Art Gallery Problem which binds a broad range
of coverage applications. Second, we introduce the utilization of the topological features
to fetch the potential guard candidates. Lastly, we also initiate combination of the non-
unicost SCP and the probabilistic evolutionary optimization for obtaining the optimal set
of guards. To the best of our knowledge, it is the first method pursuing such unified
coverage problem, including the usage of evolutionary algorithm for solving the coverage
problem.

1.2. Text organization. The rest of this paper is organized as follows. Several related
works are exhibited in Section 2. A strategy for taking advantages from the topologi-
cal features is presented in Section 3. Section 4 explains the optimization technique for
different cases of the coverage problem. We then verify our proposed approach on var-
ious experiments in Section 5. Lastly, we give the conclusion and some possible future
directions of this work.

2. Related Works. The early result of the Art Gallery Problem was published by
Chvatal [15] in which it is proclaimed that (%) guards are adequate for covering any
polygon with n vertices, which later was proved by Fisk [16]. Using Fisk’s proof, Avis
and Toussaint [17] then developed an O(nlogn) algorithm for assigning the guard posi-
tions. These classical works assume a simple polygon without holes.

Recently, a vast effort has been promoted to deal with the Art Gallery Problem and
coverage problem variants. Pinciu [18] proposed a coloring algorithm to find the connected
guards in an art gallery. Gonzalez-Banos and Latombe [5] presented an algorithm for a
restricted version of the sensor placement problem (with a connection to the Art Gallery
Problem) using a randomized approach, by applying a large set of guards and optimizing
them using hitting set approach.

Later, heuristic-based approaches were then introduced. The authors in [19] adopted
a greedy strategy to form a set of heuristic-based algorithm with the polygon partition
methods. Bottino and Laurentini [14] then created a new heuristic for the Art Gallery
Problem; however, the algorithm was restricted to cover only the edges of a polygon.

The most recent works made attempts for seeking an exact solution of the Art Gallery
Problem via Integer Linear Programming (ILP) approach. Couto et al. [13] introduced
an exact algorithm for the problem limited to the vertex guards. In [20], the authors
utilized a finite set of so-called witnesses and guard candidates, and employed a linear
relaxation of the primal-dual formulations iteratively to find the integer solution of the Art
Gallery Problem. It was then improved in [21] by introducing the combination of Linear
Programming (LP) and Difference of Convex (DC) programming. While both approaches
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performed good results in several instances, they failed to converge to the integer solutions
in many other samples. Moreover, their approaches were basically restricted to the original
issue of the Art Gallery Problem which did not take account of the guard positions.

In short, the existing algorithms for solving the Art Gallery Problem and sensor coverage
above suffered from the following drawbacks:

a) They are applied to a simple or certain class of polygon, e.g., a simple polygon without
holes or a convex polygon;

b) They are only applicable for limited problems, e.g., either a solution only for the
vertex guards or just covering the edge of environment;

c¢) Lack real applications on the real environment conditions, since most of previous
works are only a geometrical proof without any example on the real situations.

3. Generalized Hybrid Evolutionary Coverage Problem. This section describes
the framework of our approach for solving the coverage problem. The term “generalized”
here is used for emphasizing our intention to develop a coverage algorithm which binds
diverse applications, in contrast to the original Art Gallery Problem.

3.1. Algorithm overview. Our proposed method consists of two large portions: ex-
tracting the location of the guard candidates, and optimizing them to obtain the optimal
position of the guards. The first part involves the process of simplifying the given en-
vironment or map, from which we draw up a set of guard candidates. The topological
features are then employed to guarantee the full coverage of the entire environment, by
using the concept of visibility polygon.

The second part incorporates the optimization procedures of the obtained guard can-
didates. Here we propose the usage of a non-unicost Set Cover Problem alternated by a
probabilistic evolutionary optimization technique, to ensure the optimality of the guards
in accordance with the various problem settings (i.e., different applications of the coverage
problem). Figure 1 shows the outline of our proposed algorithm.

3.2. Planar polygon extraction from the environment map. Let M C R? denote
a typical occupancy grid map representing the environment which is obtained either by a
Simultaneous Localization and Mapping (SLAM) or a semantic map labeling algorithm.
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FiGURE 1. Block diagram of the proposed algorithm for the coverage problem
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The map M is decomposed into two separable area, M = {M,,, M }. Intuitively, M,,
can be perceived as the “wall” area, i.e., the area which is impenetrable (in sensor terms)
or non-passable (in robot terms), while M, has the opposite meaning.

As the environment map tends to have a complex shape, our objective is to relax the
map M into a simpler 2D planar polygonal form. We implement a set of the image

processing procedures for simplifying M (the nearly similar procedures can also be found
in [22]), as follows.

a) Binarization. Each point m € M is mapped to a binary map Z(m) as follows

T(m) = {1 for Vm € M, (1)

0 otherwise.

b) Smoothing. We perform a morphological operation using opening and closing op-
erators for reducing noises in the map.

¢) Contour extraction. An algorithm introduced by Suzuki and Abe [23] is then
employed for extracting the contour from the binary map Z(m). It yields an outer
contour ¢ B and (possibly) k-inner contours ¢ Bf', and both are a set of closed
segment chains.

d) Line segments simplification. Lastly, we use Douglas-Peucker algorithm [24] for
simplifying the contours § B and § Bf!. The output is a closed, connected polygon P
with the outer boundary P and k-inner boundaries d H, where k denotes the number
of holes inside P. Since Hj can be seen as the polygonal holes inside P, a point p is
said to be the interior point of P if it satisfies

)}

For the sake of simplicity, from now Equation (2) is written by p € P to describe the
interior point p.

Figure 2 shows the example of simplified map created from the original 3D environment.
The white area in Figure 2(c¢) represents the interior of the polygon from which we want
to obtain the guards.

() (d)

FIGURE 2. Simplifying environment map: (a) original environment, (b)
map from SLAM algorithm, (c) binarized map, and (d) extracted polygon
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3.3. The concept of visibility polygon. In the coverage problem, calculating the vis-
ibility polygon from a point (see Figure 3) becomes the most fundamental problem.

Definition 3.1. Given a point p € P, another point ¢ € P is considered visible from p if
pq C P, where pq is a line segment.

This basic notion leads to the establishment of the visibility polygon V(p), which is
defined as
V(p) ={Vq € P |pqC P}. (3)
Here we follow the work of [25] which utilizes a triangular expansion algorithm for imple-
menting our visibility polygon. The interested readers are encouraged to directly refer to
the original paper [25].

Ficure 3. Visibility polygon of a point. The bold line segments are the
visibility polygon of the point (bold cross).

3.4. Guard candidates from the ensemble features. The term “guard” is defined as
a location on which we set an entity for “seeing” or covering the area in the environment
(in this case, the polygon). The physical form of the entity can be a sensor, camera, base
station, or even a robot. Intuitively, a person will put the guard at the position which has
a wide view, or at the location which is difficult to see. For instance, a security camera
is usually placed on the top corner of a room, or, if we have an omnidirectional camera,
we will place it on the middle of ceiling which has maximum field-of-view (e.g., at the
intersection of corridors).

For solving the coverage problem, we first extract the possible location of the guards
using the human intuition as mentioned above. Here the topological features of the
environment are adopted and selected as the candidates, as follows.

3.4.1. Vertex guards. The polygon vertices are among the important features in a polygon.
Several previous researches on the Art Gallery Problem also employed these features, such
as [14,18,26]. In reality, a vertex of a polygon represents a corner of a room on which the
sensor or camera is placed. To obtain the vertex guards, we simply take out all vertices
of the polygon’s boundary, including its holes (if any).

3.4.2. Skeleton vertices as the interior guards. In the real problem setting such as a build-
ing, we can naturally determine the place in which we will get a wider view. Intuitively, a
person will say that an intersection of corridors in a building grants wider view, compared
with the wall or the corner of the room. Based on this reason, we deem it is necessary for
us to take account of the topological shape of the environment for the coverage problem.
Thus, we use skeletonization technique for capturing topology of the polygon.

For obtaining the skeleton vertices, we first build a skeleton map using Laplacian of dis-
tance transform technique [22] (in contrast to the straight skeleton in [27]). We construct
a distance transform map D (Figure 4(a)) given by

p—7p| forpe P, pe{dP,0H
D) = {n || {op,om} n

0 otherwise
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where p' is the nearest non-passable point to p.
We then apply a Laplacian filter to D, to get the skeleton map K, denoted by

_0*D N 0?D

opz ~ Op}’
where p, and p, respectively denote the z-axis and y-axis of the point p. K is then
binarized by a threshold. The skeleton guards are then acquired by taking out all junctions

and endpoints of the skeleton (Figure 4(b)). Both types of guards (vertices and skeleton)
are then coalesced, producing a set of guard candidates G.

K(p) (5)

(a)

FIGURE 4. Skeleton guards extraction: (a) distance transform of the map,
(b) obtaining skeleton vertices. The circles denote the skeleton guards.

3.4.3. Coverage guarantee. Before an optimization process is carried out for the set of
guard candidates above, we want to show that the mixture of the guard candidates itself
has already been able to cover the entire polygon, even it is not the optimal one. In
other words, this property is giving a clue to the optimization part that it should always
return a solution (i.e., full coverage of the polygon). The following proposition is used for
exhibiting the coverage guarantee of the guard candidates.

Proposition 3.1. All vertices (including the holes, if any) of a planar polygon are always
adequate for covering the entire polygon.

Proof: One of possible ways to prove this proposition is by using the set theory over
the established theorems. For the polygon with holes, O’Rourke [2] stated %2'1 vertex
guards are sufficient for covering a polygon with n vertices and h holes (see Theorem 5.1
of [2]). Let G, be a set of all vertices (including the holes) of a polygon with cardinality
n, and G, be the set of covering vertices in O’Rourke theorem with cardinality %2'1 We

242k < p. The problem can be written as

n+2h< 2h<2n

n@_ —_—

- 3 — 37 (6)
<~ h <n.

begin with proving the set cardinality,

e If h =0, since n > 3 (a polygon is composed by at least three vertices), then h < n
is held.

e If h > 0, since n > 3h > h (a hole has at least three vertices), then Equation (6) is
held.

Thus, the inequality holds for any number of holes. Here we have proved that the state-
ment m?fh < n is true. As the consequence, G, C G,. It suggests there exists a set
of element in G,; which covers the entire polygon. Notice that for A~ = 0, the problem
becomes the Chvatal theorem [15]. O]

Consequently, the guard candidates G which is a combination of the vertices and skele-
ton guards, retains the same coverage guarantee.
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Proposition 3.2. The coverage of the combination of quard candidates G over the polygon
P is always guaranteed.

Proof: Let G,; and G respectively be the vertex and skeleton guards. Subsequently,
the guard combination G can be denoted as G = G, | JGsk- From Proposition 3.1, we
know that Vg, € G,; holds the coverage guarantee. Using the set theory, since G,; C G,
it implies Vg,; € G. Thus, G retains the same coverage guarantee as G,;. O

4. Guard Optimization with Hybrid Evolutionary Strategy. After the guard can-
didates are determined, the next step is to optimize the number of guards for covering the
entire area of P. Even for the original issue of the Art Gallery Problem which does not
consider the placement of the guards; it is already an NP-hard problem [28]. Here we try
to evade the problem by applying a hybrid optimization approach. First, we transform the
coverage problem into a Set Covering Problem, a family of Integer Linear Programming.
A heuristically probabilistic evolutionary optimization is then administered to obtain the
optimal guard positions.

4.1. Arrangement of the guard’s visibility. Before we bring the coverage problem
into a Set Covering Problem, we need to understand its prerequisite of the transformation,
that is the polygon arrangement. We borrow the definition of the arrangement from [29].
Given a finite set of guard candidates G, from which we acquire a set of visibility polygon
V(G), the arrangement A(G) is then defined as the subdivision of the plane created by
the intersection of all vertices of V(G), such that A(G) : V(G) — F.. Each subdivision
area of A(G) is called a face, denoted by f. € F.. Figure 5 shows the definition of the
arrangement and face.

FIGURE 5. Arrangement of a set of guards. The bold crosses represent the
guards. All edges are the result of combining the visibility polygon of all
guards. The gray area is one of the face created by the arrangement.

Reciprocally, we can construct the visibility polygon of a guard V(g;) as a set of faces
fe “seen” by the guard g, € G, such that

V(gl)%{ U fc|fclc-rc}; (7)

Vfo€Fe1
where
Fa={VfeV(g)}. (8)
It then raises a definition of the polygonal coverage, as follows.

Definition 4.1. The coverage of a polygon P by a finite set of guards G is guaranteed
under circumstances
P=J f 9)

Vfe€Fe
where F, are composed by the arrangement of V(G).
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In other words, all faces will always cover the polygon as long as its composing set of
guard G also has a full coverage. Now we aim for the optimal number of G which satisfies
Definition 4.1.

4.2. The Art Gallery Problem as the Set Covering Problem. Equations (7) and
(9) give two consequences:

a) There may exist a face “seen” by more than one guard, or geometrically

v(gl) ﬂv(gQ) ~ -Fcl m]:cZ 7é (ba {91792} S g (10)

It simply means some guards may cover the same area.
b) Summation of all faces in F, should cover the entire polygon P, in order to comply
with Definition 4.1.

These consequences lead to the problem of assigning the smallest set of guards G such
that its summation of faces in the A(G) satisfies Equation (9). Accordingly, we are able
to bring the coverage problem into an Integer Linear Programming formulation, more
precisely, a Set Covering Problem.

Given an M x N matrix A, the Set Covering Problem (SCP) is defined as a problem
of discovering a subset of the columns of A which covers all rows at a minimum cost [30].
Using the SCP formulation, the original Art Gallery Problem can be defined as follows

N
Minimize Y g, for g, €G (11)
n=1
N
s.t. Zamngn >1, {m=1,...,M} (12)
n=1
g €{0,1}, {n=1,...,N} (13)
mn € {0,1},  app € A (14)

Here, M and N respectively denote the number of faces of the arrangement and guard
candidates.

From the above minimization, the SCP formulation for the Art Gallery Problem is
obtained by making the guards be the sets used for covering and imposing the faces of
the arrangement as the elements to be covered. The guard placement inside the polygon
is modeled by testing it using a binary condition (g, = 1 if the guard is included into the
set). Henceforth, a face row(any,) is set to 1 if it is seen by the guard g, (see Equation
(14)). Inequality of Equation (12) assures that a certain row must be covered by at least
one column, or in other words, a face should be covered by at least one guard. It will
guarantee that the entire polygon P is fully covered.

4.3. Non-unicost Set Covering Problem. According to Equation (11), each guard
candidate is treated the same, i.e., it does not matter where the selected guards are
chosen from, whether it lies at the interior or the vertices of the polygon, as long as it
can cover the entire at the most minimum number. This is exactly what the original Art
Gallery Problem aims for.

Such formulation of Equation (11) is often called unicost Set Covering Problem, in-
dicating each guard is eligible to be chosen with the same cost. Nevertheless, in many
cases of the coverage problem, some guards may become more alluring than the others.
An interesting instance will be that a network provider should calculate the different land
cost for placing each Base Tranceiver Station (BTS), while still covers the whole area.
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In order to achieve a broad range of the coverage application, here we propose the usage
of non-unicost Set Covering Problem. It allows us to assign different cost for each guard.
Subsequently, we modify Equation (11) as follows

N
Minimize Zc(g)g, for g € G. (15)

Equation (15) introduces a cost function ¢(g), from which we can manage how important
a guard will be. The formulation in Equation (11) becomes the special case of Equation
(15) where all costs are equal. We will describe the cost function ¢(g) further in the
experimental section along with the examples, including how it will affect and alter the
coverage problem.

4.4. Hybrid evolutionary guard optimization. The output of the non-unicost SCP is
self-explanatory, i.e., it attains the optimal combination among the input set G. However,
it does not imply that the result is also the optimal one for the coverage of a polygon.
This matter arises since there is no guarantee whether the optimal guards are already in
the input set G or not; we only ensure the coverage as suggested by Proposition 3.2.

We then come up with a strategy to cope with it. Essentially, we break down the
optimization process into two parts: initial and probabilistic evolutionary optimization.
In the initial optimization, we reduce the guard candidates composed in 3.4 using the steps
mentioned in Sections 4.1 to 4.3, yielding an initial upper bound of the guards. Afterward,
we make attempt to reduce the guards further. Here we examine the area which has
mutual guards coverage using a probabilistic evolutionary optimization, alternated by the
non-unicost SCP. This technique is expected to cut down the mutual guards coverage by
an alternative point guard.

4.4.1. Initial optimization. Let Gy be the initial set of guard candidates obtained in Sec-
tion 3.4. We first optimize the guard candidates by

a) Constructing the arrangement A(G);

b) Building the cost function of the guards ¢(Gy);

c¢) Solving the non-unicost SCP to get a set of pre-optimized guards G,,;. The cardinality
of Gopt 1s then called initial upper bound?.

The initial upper bound |G,p| of the possible optimal guards from the set is acquired
using the above steps. To make it compact, the initial upper bound |G, | is now denoted
by U. Since the algorithm is continued by an iterative optimization, the notation G, will
be constantly used to show the set of the optimal guards found so far.

4.4.2. Iterative probabilistic evolutionary optimization. Our basic idea is to examine each
optimized guard for further possible reduction, by analyzing the faces of its arrangement.
Given a face f. C A(Gopt) “seen” by a set of guards Gpor C Gopt, the following definition
is then applicable.

Definition 4.2. For a face f. seen by all g € Gy, it implies that all point guard g € Gper
are inside the visibility polygon of any point p € f.,

{9 € Gpar| e CV(9)} = {Vp € [e|(Vg € Gpur) € V(p)}- (16)

The above definition is an extension of Definition 3.1, from which we want to show the
possibility of “seeing” a set of guards by a point inside a face. It does not necessarily imply
that all area of V(Gp,-) will be covered by a point p € f., yet it exhibits the likelihood

! This naming convention suggests an attempt to decrease the cardinality, lower than this upper bound.
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of “replacing” several guards to one point. Hence, Definition 4.2 becomes the stepping
stone for our proposed approach for finding the optimal guards.

By making use of the definition above, here we build a face cost map which shows how
the faces are parameterized by the guards, i.e., a face will have a higher value when it is
covered by more number of guards. Let h(f.) be the face cost map function defined by

h(fC) = |gpar|a Vf. € Fe. (17)

Subsequently, we use h(f.) as a distribution function for sampling a set of auziliary guard
candidates. We currently sample the auxiliary guard candidates Gsqmpiing from F, using
h(f.), as much as two times of |G,,|. It is expected that we will obtain more samples on
the face covered by more guards. Figure 6 shows the definition of the face cost map.

FIGURE 6. Face cost map of the arrangement in Figure 5. Brighter face
means it is seen by more guards.

Both Gopr and Ggampiing are concatenated forming a combined set of guards, from which
the non-unicost SCP is then solved using the same steps as the one in the initial opti-
mization, yielding a new set of optimized guards G,. The above processes of constructing
the face cost map, sampling the auxiliary guard candidates, and solving the non-unicost
SCP are accordingly alternated for the iterative optimization procedures.

A heuristic approach is then exerted for examining the optimality of the guards pro-
duced under current iteration. In principal, we wish the reduction of the cardinality
(guard number), or a better aggregated guard cost ¢(g,) as demanded by Equation (15).
We commence from the non-unicost SCP results (i.e., G,). There are three possible out-
puts which correspond to the cardinality of optimized guards G, and its leverage to the
next iteration.

a) |G,| < U. This is what we expect for, subsequently the next iteration will start using
this new guard set G, and the upper bound U is lowered to |G,|.

b) |G,| > U. It means the minimization in Equation (15) generates a set of guards which
has lower aggregated cost, despite of having a higher cardinality. Please note that
this type of output unlikely happens when the uniform cost function is used (e.g., the
original AGP), considering Proposition 4.1 which will be presented later.

¢) |G| = U. It means G, has a better aggregated cost with the same cardinality. We
will particularly discuss this type of output later.

We empirically found that after several iterations, the last type of the output of the
non-unicost SCP above appears in most of the cases. It suggests the cardinality of the
guards for the coverage problem is gradually converged. Thus, a Hausdorff metric is
adopted to ascertain the stopping condition of the iterative optimization process, defined
as

th(gr; gopt) = Imax {d(gr; gopt); d(gopta gr)} )

where d(gra gopt) = gleag}f go;nei&pt ||g7" - gopt“-

(18)
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Here, Equation (18) has a physical meaning that is when the algorithm converges, there
should not be much change on the position of the optimized guards iteration-by-iteration.

For the last two types of the output of the non-unicost SCP above, we merge the G,
and G, to be used in the next iteration. By this strategy, we basically feed the SCP solver
all viable set of candidates found so far (i.e., has the same cardinality or cost) and let it
discover the best one as the solution. It is expected to avoid the alternating result of the
optimal guards? and speed up the optimization process.

Using this merging technique, we evoke the following proposition, to prove our state-
ment in the second type of the output above.

Proposition 4.1. For uniform cost function, the cardinality of subsequent optimal guards
|G:| in the iterative optimization should not exceed the initial upper bound U.

Proof: (Proof by Contradiction) Assume |G,| > U is true. For the iteration i = 0
(initial optimization), G, is basically equal to G, so that |G,| is equal to U. In the
next optimization process, yielded G, will be merged with G,,, and the algorithm uses
Gopt U Gsampling as the guard candidates G, which is then utilized for solving the SCP
(Equation (15)). It means G, C G. Since Equation (15) is a minimization problem with
uniform ¢(g) and the previous G, is in the set G, the possible maximum cardinality must be
U, by means of the Set Covering Problem. However, it contradicts the initial assumption.
Therefore, we have to conclude that |G,.| < U for the subsequent iteration. O]

Someone may wonder that the metric in Equation (18) only considers the norm between
two sets, regardless of the cost function ¢(g). This matter is clarified by the following
proposition.

Proposition 4.2. Under all conditions, the iterative optimization in the probabilistic

search always produces
Yo < Y ey (19)

gregr g; eg;

where G is the optimal solution in the previous iteration.

Proof: (Proof by Contradiction) The proof construction is basically the same with
Proposition 4.1. Assume Y . c(g,) > > -cg- c(g,) is true. In the iterative optimiza-
tion, G, is in the set of G used for minimization in Equation (15), since G, is merged
with Gope and G = Gopr | Gsampiing- Again, it suggests the minimization result has the total
objective value which is equal to at most »_ - ;- c(g, ). Yet, it contradicts the initial
assumption. Hence, we draw a conclusion that the proposition is true. O

The above proposition ensures that our proposed hybrid probabilistic guard optimization
is probabilistically converged towards the optimal solution. We then call off the iterative
process when Dyq(Gy, Gopt) is below a threshold.

The probabilistic evolutionary optimization is summarized as follows

a) Initialize the cardinality of the given guard candidates;
) Establish the face cost map;
) Sample a set of auxiliary guard candidates using the face cost map;
) Solve the non-unicost SCP;

e) Check the convergence using the Hausdorff metric, and repeat.

The complete process of our proposed optimization is shown by Algorithm 1.

2A condition where two sets of the optimal result show up alternately, which may create an infinite
loop.
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Algorithm 1 Probabilistic Evolutionary Guard Optimization

Require:
1: Gy: initial set of guard candidates
2: |Gol: cardinality of G,

3:
Ensure:
4: Gop: optimized guards
5:
6: procedure PROBEVOGUARDOPT(Gy)
7 // Initial optimization
8: Gopt < Init(Gy)
9: U < |Gopt| > initial upper bound
10: // The real loop starts here
11: faceCostMap(Gopt) > Equation (17)
12: gsampling — Sample(gopta 2|gopt|)
13: Gy < s0lveSCP (Gopi | Gsampiing) > Equation (15)
14: if |G,| > U then > Proposition 4.1
15: gopt = gopt U gr
16: go to 12
17: else if |G,| < U then
18: GOpt = GT
19: U < |Gopt|
20: go to 11
21: else
22: if Dpa(Gr, Gopt) > threshold then > Hausdorff
23: gopt = gopt U gr
24: go to 11
25: else
26: gopt - GT
27: break
28: end if
29: end if
30: return G,

31: end procedure

4.5. Remarks. The reader may notice that the result of the non-unicost SCP in each
iteration is examined by its cardinality. It then raises a question, there exist possibilities
to have the G, which has more guards than previous G,,, but with a smaller cost. In
the real cases, the cost of a guard is often not so cheap (e.g., sophisticated camera, and
robot). Therefore, we consider minimizing the number of guards as our priority.

Another notable thing is that the size of G,y will grow due to the merging technique
Gopt UG- Still, we have never empirically undergone any “bloated number of guard”
problem, since the optimization process is done on a bounded area (polygon interior)
with the Hausdorff metric. We can expect the distance between the optimal set on the
current iteration and G, will gradually decrease.

5. Experiments and Results. The implementation of the GHEC-Solver is done on
a Windows PC (i7 2.4 GHz, 16 GB RAM) using C++ programming language. We
extensively utilize the Computational Geometry Algorithms Library (CGAL) [31] for
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performing the visibility calculation, the arrangement building, and some other geometric
computations. To solve the non-unicost Set Covering Problem, we use both open source
(GLPK [32] and SCIP [33]) and commercial® (CPLEX [34] and Gurobi [35]) solvers.

5.1. Experimental settings. We want to evaluate the effectiveness and generality of our
proposed algorithm. For accomplishing that goal, we prepare six different environments
as shown by Figure 7, grouped into:

a) Artificial 2D/3D maps without and with holes (Figures 7(a), 7(b), 7(d), and 7(e));
b) A star-shaped synthetic polygon (Figure 7(c), which is also used in [5]);
¢) A complex real building at our university (Figure 7(f)).

The environments represent distinct types of the coverage problem. The environment in
Figures 7(a), 7(b), 7(d), and 7(e) elucidates the ability of the proposed method to handle
the coverage of various classes of polygon, as well as how to transform the environment
itself into a polygon. To be more specific, Figures 7(a) and 7(b) exemplify the coverage
problem in the environment without holes, while Figures 7(d) and 7(e) show the opposite
one.

The star-shaped polygon (Figure 7(c)) is the special case of the coverage, from which
we want to exhibit how far the guard optimization can be carried out by our algorithm.
Intuitively, a guard located exactly in the middle of the polygon should cover the entire
environment.

Lastly, an attempt to solve the coverage of a real and complex building is demonstrated,
showing the feasibility of our algorithm to be directly adopted in the real environment.
Here we use a hall room inside our university (see Figure 7(f)). Table 1 shows the polygon
complexity of each environment, where it varies from 24 to 102 vertices.

FIGURE 7. Environment map used for the coverage problem: (a)-(f) the
real environment map used as input, (g)-(1) the simplified polygon of its
respective map. The map-polygon pairs are (a)-(g), (b)-(h), (¢)-(i), (d)-(j),

(e)-(k), and (£)-(1).

3We use the academic version of CPLEX and Gurobi.
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TABLE 1. Polygon complexity of the environment

| Environment | Generic Map Name | # vertices | # holes |

Figure 7(a) A 32 0
Figure 7(b) B 2% 0
Figure 7(c) C 24 0
Figure 7(d) D 51 2
Figure 7(e) E 38 1
Figure 7(f) F 102 11

Generality of the proposed algorithm is then confirmed by experiments in the following
sections, which represent different kinds of the coverage problems. We want to show that
it can be achieved by simply changing the cost function ¢(g).

5.2. Art Gallery Problem. In this experiment, we evaluate the capability of our pro-
posed algorithm to solve the original issue of the Art Gallery Problem. The goal is
obvious to minimize the number of guards without bothered by any guard preference and
placement. It can be realized by making the cost function ¢(g) in Equation (15) to be
uniform.

Here we analyze the result of our approach applied into all environments mentioned
in Section 5.1. First, we examine the guards quality generated by our algorithm. Table
2 represents the optimal guards produced by the initial and iterative optimization (as
have been explained in Sections 4.4.1 and 4.4.2), and its computational time respectively.
The computational time shown in the table refers to the method using SCIP [33] as the
non-unicost SCP solver, which performs the best among all solvers. Further analysis
about the SCP solvers will be clarified later. Thus, the optimal guard positions can be
qualitatively perceived in Figures 8 and 10.

TABLE 2. Number of optimal guards for the Art Gallery Problem and its
computational time

Map % Guard _ # Optimal anrds
Name | Candidates In1t} al Time (s) Evolutl‘onary Time (s)
Optim. Optim.

A 62 5) 1.442 4 15.166
B 50 4 0.792 3 6.451
C 46 1 0.883 1 0.883
D 104 8 3.290 8 18.308
E 76 7 1.163 7 10.213
F 224 11 40.102 11 206.182

From Table 2, we observe that the initial optimization reduces the number of guards
significantly with a fast computational time. It can even be remarked as “near optimal”
compared with the final results. It clarifies the merit of the guard candidate features
which assists the GHEC-Solver in converging quickly.

The iterative probabilistic evolutionary optimization also plays a good role. In maps
A and B, the guards are further optimized to obtain the optimal solution. Figure 8(a)
vs 10(a) and 8(b) vs 10(b) show the head-to-head comparison of the initial and iterative
optimization. The other maps yield the same cardinality even after going through the
iterative optimization process. An example of the evolution of the guard positions during
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FicURE 8. Initial optimization result of the Art Gallery Problem. The
guard positions are marked by the bold crosses.

FiGurEe 9. Evolution of the guards during the iterative optimization pro-
cess for map A (from left to right)
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FicURE 10. Optimal guards for the original Art Gallery Problem. The
guard positions are marked by the bold crosses.

this iterative optimization is shown by Figure 9. Here we can make a suggestion to the user
which concerns with the computational speed and is willing to get considerably “good”
cardinality, employing the result from the initial optimization of the GHEC-Solver has
already served the purpose.

5.3. Coverage problem with guard preferences. In this section, we investigate the
performance of our algorithm when the guards are restricted based on the user preferences,
for instance, it can only be placed at the vertices. It realizes the problem mentioned in
the following example.



936 I. ARDIYANTO AND J. MIURA

Example 5.1. Vertex only guards: This type of problem resembles most of the existing
Art Gallery Problem, such as [15,17,26]. Here we need to put the guard exactly on the
vertex of a polygon. Following cost function is then used.

1, or g € vertices,
Jorg € (20)
otherwise.

Actually, this problem can be simply achieved by removing all guard candidates which
are not located at the vertices of the polygon. In our case, however, we want to exhibit
how this problem can be solved by simply modifying the cost function, which shows
the generality of the GHEC-Solver. Figure 11 and Table 3 demonstrate its optimization
results.

We notice that the guard cardinality is higher than the one in the Art Gallery Problem.
It is because we lost some information from the non-vertex guards which is restricted by
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FiGure 11. Optimal guards for the vertex coverage problem. The guard
positions are marked by the bold crosses.

TABLE 3. Optimal guards for the coverage problem with vertex only guards

# optimal guards
Map Initial . Evolutionary | ..
Name ... | Time (s) . .7 | Time (s)
Optimization Optimization
A 5 1.520 5 11.600
B 4 0.703 4 5.139
C 3 0.770 3 6.770
D 8 3.590 8 11.891
E 7 1.025 7 7.780
F 13 35.400 13 100.632
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the cost function. It also signifies how the topological features play a great role to render
an optimal solution for the coverage problem. An obvious example is the result of map
C (Figure 11(c)) where now it needs three vertex guards to cover the entire polygon,
compared with one guard in the previous problem.

5.4. Coverage problem with arbitrary cost function. As the continuation of the
above section, we now present the realization of the coverage problem with the arbitrary
cost function, which becomes the main concern of the GHEC-Solver. We set up a case
using a set of mobile robot formations to cover the environment, as follows.

Example 5.2. Robot guards: Here we need to consider the physical limitation of the
mobile robot to do the coverage tasks. One example of this limitation is that the robot

18 supposed to be located not too close with the walls, to avoid a collision. We then
accommodate this problem using a distance function as follows
c(g) = e lo=orIL, (21)

where O P represents the boundary of the polygon (in this case, the walls). Equation (21)
tells us that we prefer to locate the robot far from the walls.

Table 4 and Figure 12 show the optimization results of the coverage problem using
the cost function in Equation (21). We can observe that there is no guard which lies at
the vertices nor the boundary of the polygon, as suggested by the usage of the distance
function. Most of the guards are located at the skeleton or the middle area of the polygon.
Physically, it means the guard robots take place in the middle of room or the intersection
of corridors, which is favorable according to the collision properties mentioned in above
example.

TABLE 4. Optimal guards for the coverage problem with arbitrary cost function

# optimal guards

Map — :
Name I‘mgal' Time (s) EVO%Ut.l ONAY | Time (s)

Optimization Optimization

A 7 2.881 6 21.859
B 6 1.471 5 10.747
C 1 1.024 1 12.488
D 10 10.849 9 29.538
E 7 1.820 7 13.417
F 14 73.668 13 212.976

One alluring result is that this coverage problem produces relatively higher cardinality
of the optimal guards than the one in the Art Gallery Problem. This matter is plausible
since the cost function in Equation (21) leads to a lower total cost as pointed by Equation
(15), even though it has more number of guards.

5.5. Computation time. Now we evaluate the computation time needed for each section
of the proposed algorithm, as well as the influence of using different solvers for the non-
unicost SCP. Most of the time are allocated for establishing the arrangement and face,
including the visibility polygon calculation. In average, it takes around 74.25% of the
total time using the best performing SCP solver. The map simplification and generating
the guard candidates spend around 17.45%, while the non-unicost SCP only takes 8.3%
of the total time.
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FIGURE 12. Optimal guards for the coverage problem using arbitrary cost
map function. The guard positions are marked by the bold crosses.

TABLE 5. Calculation time of different SCP solvers

Map Solving time (seconds)

Name | GLPK | SCIP | GUROBI | CPLEX
0.35 | 0.059 0.059 0.09
0.12 0.03 0.03 0.059
0.04 0.04 0.02 0.052
4.099 | 0.232 0.32 0.708
0.089 0.03 0.03 0.11
N/A |10.342 | 13.667 19.417

llclwik@live] s

As a side result, we also report the effect of using different SCP solvers. Table 5 shows
the calculation time needed for each SCP solver in the initial optimization stage. We
select the initial optimization for comparing the performance of each solver because the
huge number of guard candidates to be optimized are lied on it. As implied by Table 5,
the commercial solvers like CPLEX [34] and GUROBI [35] are superior to the open source
solver such as GLPK [32]. For the map F, GPLK fails to retrieve the optimal solution.
Surprisingly, SCIP [33] which is an open source solver has a comparable, or even better
speed than the commercial one. Due to this reason, all results of the coverage problem
mentioned in the previous section are accomplished using the SCIP.

6. Conclusion. We have presented the generalized framework for solving the coverage
problem. The algorithm utilizes the geometric topology features for determining the guard
candidates. A combination of the non-unicost SCP and the probabilistic evolutionary
optimization is then performed to obtain the optimal combination of the guards. We also
have shown that several classes of the Art Gallery and coverage problem can be solved
by one proposed framework.
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While our algorithm shows remarkable results, there are some open problems which
can direct the future of this research. One of them is to include the field-of-view (FOV)
limitation of the guards into the system. This constraint is very interesting since it
will broaden the type of guards which can be used in the framework, e.g., we can use
any sensor or camera widely sold in the market for setting up the surveillance system.
Another possible direction is to find an exact formulation and solution for this generalized
Art Gallery Problem.
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