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Abstract

This paper describes an uncertainty model of
stereo vision and its application to a vision-
motion planning for a mobile robot. In gen-
eral, recognition of an environment requires
much computation and the recognition result
includes uncertainty. In planning, therefore, a
trade-off must be considered between the cost
of visual recognition and the effect of informa-
tion obtained by recognition. Such a trade-off
must be formulated on the basis of a model of
vision which describes the required time for vi-
sual processing and uncertainty of information
to be obtained. In this paper, an uncertainty
model of stereo vision is described, in which
not only the quantization error but also false
matchings of features are considered. A strat-
egy for resolving ambiguous matchings is also
proposed. Using the uncertainty model in the
planner, an optimal plan for a real world prob-
lem is generated. An efficient solving strategy is
also described which employs a pruning method
based on the lower bound of the total cost cal-
culated by the assumption of perfect sensor in-
formation.

1 Introduction

There has been an increasing interest in autonomous mo-
bile robot which recognizes an environment with vision
and moves without guidance of human operators. Fig.1
illustrates a typical situation, in which the objective of
the robot is to reach the goal point at the minimum cost
(in the minimum time). The observed positions of ob-
stacles are uncertain because of uncertainties of visual
recognition. There may be two behaviors of the robot:
one is to approach the obstacles and to observe again in
order obtain more accurate information for further plan-
ning; the other is to take a detour immediately without
further observations. To decide which behavior is better,
it is necessary to consider a trade-off between the cost of
visual recognition and the effect of information obtained
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Figure 1: A sample situation.

by vision. The trade-off must be formulated on the basis
of a model of vision which describes the required time
for visual processing and uncertainty of obtained infor-
mation.

There are many researches on a uncertainty model of
stereo vision. Moravec [Moravee, 1983] used a model in
which uncertainty of an estimated position is inversely
proportional to the depth from the viewpoint. Matthies
et al. [Matthies and Shafer, 1987] proposed to use three-
dimensional Gaussian distributions to model the uncer-
tainty of the position, and showed the model performs
better than former models. Ayache et al. [Ayache and
Faugeras, 1989] described a method of building and up-
dating 3-D representation of the environment; uncertain-
ties caused by various factors such as the quantization
error or the calibration error is modeled by probabilistic
distributions, and such uncertainties are propagated via
relationships between geometric entities. They also pro-
posed a method of fusing uncertain information by Ex-
tended Kalman Filter. Kriegman et al. [Kriegman et al.,
1989] proposed a similar approach in uncertainty model-
ing for a mobile robot. These uncertainty modelings are
not related to planning. Moreover, these researches deal
with only statistical errors in feature extraction and do
not treat ambiguities such as false matching of features
in the left and the right images. Since the uncertainty
caused by false matchings 1s much larger in non-trivial
indoor environments, an uncertainty model of stereo vi-
sion should consider such an uncertainty.

This paper describes a model of stereo vision and

its application to a vision-motion planning for a mo-
bile robot. Uncertainty (including ambiguity) of a fea-



ture position caused by the quantization error and false
matchings of features is represented by a probabilistic
distribution. An efficient solving strategy is also de-
scribed which employs a pruning method based on the
lower bound of the total cost calculated by the assump-
tion of perfect sensor information. An experimental re-
sult for a real world problem is presented.

2 Formulation of Vision-Motion
Planning under Uncertainty

This section briefly describes the formulation of vision-
motion planning that we have proposed in [Miura and
Shirai, 1992a]. Uncertainty of a recognition result is rep-
resented by a probabilistic distribution. If there are mul-
tiple properties in the environment, uncertainty of infor-
mation 1s represented by a multivariate distribution. A
sequence of sensor data on a property are integrated us-
ing Bayes’ theorem.

The planner minimizes the expectation of the total
cost for reaching the destination since a plan is gener-
ated based on probabilistic information. Here, we derive
a recurrence formula which calculates the optimal next
observation point @;41 and the next optimal observa-
tion condition 0;41 from the current position @; and the
current information ¢;. Let Pupsa(#opsd; i, ®i11, 0i41) de-
note the probability that information 2,4 is obtained by
observation 0,41 at @; 41 with the current information ¢;.
Uncertainty of motion from @, to ;41 1s also included in
this probability distribution. In addition, let fuse(%1,%2)
be a function which calculates the fusion result of 2; and
5. It can be predicted that information fuse(¢;,2opsq) is
obtained with probability Pupsq(2ossd; 4i, ®it1, 0i41) af-
ter observation 0,41 at @;41.

Since Bayes’ theorem is used for information fusion,
a fusion result is considered to include information ob-
tained by all of the past sensing operations. Therefore,
an optimal plan depends only on the current position
and the current information, whatever the history of the
past vision and motion operations is. Consequently, the
minimum cost at @; with information 2; becomes the
minimum of the sum of the following costs:

1. the cost of motion to the next observation point

Liy1;

2. the cost of the next observation 0;41;

3. the expectation of the minimum cost from ;41 to
the goal point.

Therefore, the following recurrence formula (equation
(1)) is derived. If a robot can reach the goal point with-
out further observations, a recursive computation termi-
nates because the cost to the goal point can be computed
directly.

Coptimal(wi, Zz) = Hlin (
Tip1€X
0i41€0

Coptimai(®,2): The optimal cost with ¢ at .
Cimotion(®,y): The cost of motion from @ to y.

Clision(0): The cost of observation o.

A search tree becomes an AND/OR tree; an OR node
corresponds to selection of an operation; an AND node
corresponds to prediction of possible observation results.

3 Modeling Uncertainties of Stereo
Vision

The formulation mentioned above does not make any

assumptions on a model of vision except that uncertain-

ties are represented by probabilistic distributions. This
section describes a model of segment-based stereo vision.

3.1 Segment-Based Stereo Vision

In indoor scenes, there are many line segments that
are components of artificial objects. Such segments
are useful as primitive features for stereo matching be-
cause structural information is implicitly imposed as
constraints [Medioni and Nevatia, 1985]. Especially, ver-
tical line segments are useful for a mobile robot to detect
collision-free areas on the floor.

We here treat a stereo system in which two cameras are
mounted in parallel with each other and with the floor.
Thus, vertical segments in the three-dimensional space
are projected as vertical segments onto the image plane.
Vertical segments are extracted by horizontal differenti-
ation and by line fitting. For each segment in the left
image, corresponding segments in the right image are
detected based on the epipolar and the similarity con-
straint; a pair of segments can be matched if their verti-
cal positions overlap each other to a certain extent and
they have similar directions and contrast values. From
each matching of features, a three dimensional position
is calculated by triangulation.

3.2 Model of Uncertainty Caused by
Quantization Error

We here consider the uncertainty of the two-dimensional
position of a vertical segment in a real space caused by
the quantization error. The positional distribution of
the segment depends on edges used by stereo matching.
The horizontal position of a segment in the image is cal-
culated from edges in the vertically overlapping part of
the segment. The distribution of the horizontal posi-
tion is calculated from the positional distributions of the
edges by the least squares method. Assuming that the
horizontal position of each edge is normally distributed,
the horizontal position of each segment also follows a
normal distribution. By linearizing the equation of im-
age projection, the position of a segment in a real space
is represented by a two-dimensional normal distribution
[Avache and Faugeras, 1989] [Kriegman et al., 1989).

Cmotion(wia wi+1) + Cvision(oi+1)+

. . .. . (1
Poysa(obsd; b, ®it1, 0i+1) Coptimat (@iy1, fuse(i, topsa))deopsa ) (1)

X A possible range of x;41.
O: A possible range of 0;41.



The distributions of other properties can also be com-
puted. For example, suppose that a robot is measuring
the distance d between two vertical segments at @; and
x, (see Fig.2), and that p;, pt,., ¥, and X, are the means
and the covariance matrices of #; and «,.. Since the equa-
tion d =|| @; — @, || is non-linear, the true distribution of
the distance d which is obtained by propagating uncer-
tainties of two positions via the equation is not normally
distributed. Thus, by linearizing the equation, a normal
distribution is obtained as an approximation; the mean
pq and the variance o2 of which is given by:

pa = |l —p (2)
o’ /50 ST R YA S (3)

where J; (J,) is the Jacobian matrix from Ax; (Az,)to
Ad. Fig.3 shows the change of the variance of the dis-
tance (03) according to the change of the viewpoint.
From the figure, we can see that the variance depends
not only on the observation distance but also on the ob-
servation direction.
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Figure 3: Change of the vari-

ance of the distance between
the features. The means of
feature positions are (—40,0)
and (40,0).

Figure 2: Distributions
of two feature positions.

3.3 Model of Ambiguity Caused by False
Matchings

In stereo, the matching pair of a line segment in the
left 1mage is easily found if there is only one match-
ing candidate in the right image. If there are multiple
corresponding segments, extra criteria are needed to de-
cide the correct matching. Medioni et al. [Medioni and
Nevatia, 1985] used surface continuity constraint as a
criterion. Ayache et al.[Ayache and Faverjon, 1987] also
used such a constraint by introducing a neighborhood
graph which stores adjacency of segments. It is, how-
ever, sometimes difficult to decide correct matchings in
case that the disparity smoothness constraint is violated
because of occluding boundary or orderings of segments
differ from each other in the right and the left image
because of narrow occluding objects[Dhond and Aggar-
wal, 1992]. In our approach, the possible positions of
segments are all kept in the model, and the ambiguities
are resolved by the subsequent observations if necessary.

Let [; be aline segment in the left image and R = {r; }
be a set of possible corresponding segments. For each
matching pair ({;,7;), a normal distribution of the two-
dimensional position of a point in the real space 1s cal-

culated using the model of the quantization error. We
model the positional uncertainty of line segment {; by a
set of such normal distributions; the positional distribu-
tion of [; is represented by a weighted sum of the normal
distributions; a weight for a distribution is calculated by
an evaluation function based on both the similarity of
segments (on directions and contrasts) and the ratio of
the length of the vertically overlapping part to the length
of the longer segment.

Let us consider Fig.4 as an example. Suppose a robot
is passing the space at the center of the scene toward
the bookshelf. By applying our stereo algorithm, three
sets of ambiguous matchings were detected which must
be considered to decide the passability of the space in
front of the robot. Fig.5 shows the normal distributions
calculated from these matchings. The position of the
matched segment corresponding to each distribution is
indicated in the right image in Fig.4.

A
B
Y
LX B”J'C’

Figure 5: Distributions of the positions of three vertical
segments. The darker a point is, the higher the proba-
bility is.

3.4 Strategy for Resolving Ambiguous
Matchings

If there are ambiguous matchings, a trade-off is consid-
ered between the cost of resolving ambiguity and the ef-
fect of the disambiguated information. If resolving ambi-
guity is better, a robot searches for the next observation
point in the area where all of false matchings are elim-
inated. Such an area is calculated as follows. In Fig.6,



for example, two candidate positions are obtained for a
feature by the first observation. Suppose T is the true
position and F' is the false one which is, of course, not yet
known. If a false matching occurs again in the second
observation, the false position will lie on the line LT
or RiT. Let F’ be such a false position. If F' and F’
are apart from each other so that they do not overlap,
only T will remain and the matching ambiguity will be
resolved.

possible false position
by the 2nd observation

false position
by the 1st observation

F -—

. true position

2nd observation
1st observation R
2

LR L2

Figure 6: A viewpoint for resolving ambiguity.

Let pp, prpr, Xp, and X/ denote the means and co-
variance matrices of F' and F”’. The relative position of F'
with respect to F” is represented by the mean pp, — pp
and the covariance matrix Xy + X /. Whether the two
distribution overlap or not can be checked by checking
whether F' belongs to this distribution of the relative po-
sition. The Mahalanobis distance of F' with respect to
this distribution,

dm = (pp — p) (Cr+ Co) (g — ppr),  (4)

has a y? distribution with two degrees of freedom. It is
possible to check whether the two distributions can be
fused with certain confidence by setting an appropriate
threshold on d,, [Ayache and Faugeras, 1989].

The following steps are employed to check whether a
viewpoint is valid for disambiguation. Fig.7 shows the
case where a viewpoint is on the right side of the line
LyT. In this case, four cases (F', ~ FJ,) are examined.
Let us explain the case of F,. I, lies on the line L,T.
For each possible position of "y, the distribution of FY, is
first calculated considering the quantization error; then,
the Mahalanobis distance is calculated between this dis-
tribution and the distribution of F'. By repeating this
calculation for all possible positions of F, the minimum
value of the Mahalanobis distance for F) is obtained. If
the minimum value throughout the four cases is larger
than some threshold, the distributions of ' and F' do
not overlap, and consequently the matching ambiguity
is resolved. A set of valid viewpoints is the search area
for the next observation point.
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Figure 7: Four cases for the check using the Mahalanobis
distance.

4 Efficient Solving Strategy using the
Uncertainty Model

In our formulation, the computational cost for solving a
vision-motion planning problem depends on the combi-
nation of the number of possible observation points, that
of possible targets to be observed, and that of possible
observation results. An exhaustive search at each level
of the search tree may cause combinatorial explosion. In
order to reduce the computational cost, an efficient prun-
ing methods is required. In branch-and-bound method
[Ibaraki, 1987], branches are pruned which do not gen-
erate better solutions than the current incumbent (the
best solution among those that have been acquired so
far). Such a pruning is based on the estimate of the lower
bound of a branch. This section describes a method of
calculating the lower bound using the uncertainty model
of stereo vision.

4.1 Assumption of Perfect Sensor Information

Let 2, be information including uncertainty to be ob-
tained by a next observation o, and ¢, be information to
be obtained by assuming that o can provide information
without uncertainty. Generally, the cost of a solution
sp based on ¢, is less than or equal to that of a solu-
tion s, based on #,. Therefore, s, gives the lower bound
of the cost of possible solutions. We call the cost of s,
the lower bound under the assumption of perfect sensor
mformation.

In order to employ the assumption of perfect sensor in-
formation, it is necessary to know what is perfect sensor
information. If a property (e.g. the position of a fea-
ture) is to be sensed, perfect sensor information means
that the variance of the distribution of the property is
zero. Such information, however, is useless because the
probability of obtaining each possibility of the perfect
information 1s derived only from the obtained distribu-
tion.

If the possible situation is classified into several situ-
ations according to the values of properties, and if the
cost can be calculated for each situation, the assumption
of perfect sensor information provides useful informa-
tion. For example, let us consider the situation depicted
in Fig.1. Suppose the robot has obtained a probability



distribution of the width of the space between objects.
There are three possible situations: (1) the lower bound
of the distribution is larger than the robot width and
the space is passable; (2) the upper bound of the distri-
bution is smaller than the robot width and the space 1s
impassable; (3) otherwise, the passability is undecided.

Let N(wp, o7) be the current distribution of the width
of the space between obstacles and ¢, be the uncer-
tainty of the next observation. In addition, let w; and
o? denote the mean and the variance of the distribu-
tion after observation which is the fusion result of the

current distribution and the observed one; ¢? is given

by o302, /(03 + 02,,); wy follows a normal distribution
N(pw,,00,) = N(wo,04/(0f + 02,,)) [Miura and Shi-

rai, 1992b]. If the passability of the space is determined
by comparing the robot width W, 3,¢ with wy £307, the
probability Py that the space is passable, the probabil-
ity Py that the space 1s impassable, and the probability
Pa that the passability is undecided are given by the
following (see Fig.8):

00
1 279452

ro o= T T
Wiobot+301 27031
Wiobot+301 1 5 5

Pr = / = 6_(w1—w0) /Zawldwl, (5)
Wiobot—301 \/ 27{0-101
Wiobor—301 1 5 5

P, = / e Y
oo \V2mol,

P(w) after the next observation ( N(Hyy ,0\,2Vl )

Px Pa
T

301 ! 30q

Po —

width

Figure 8: Calculation of three probabilities.

If the observation result includes no uncertainty (i.e.
under the assumption of perfect sensor information), the
probabilities are obtained by letting ¢, = 0 in equation
(5). In such a case, the passability of the space is per-
fectly determined, that 1s, Po becomes zero.

4.2 Calculating Lower Bounds

If a set of fixed situations with probabilities is obtained,
the cost for each situation is calculated. Then, the lower
bound is obtained as the expectation of the total cost.
A better lower bound is obtained using the uncertainty
model of vision. Again in the above example, once an
observation point and a target of observation are de-
cided, the uncertainty o2, is determined and therefore
probabilities in equation (5) are calculated. In case of
Po and Py, costs can be calculated because the situ-
ation is fixed. In case of Pa, the lower bound can be
obtained by applying the assumption of perfect sensor

information recursively. If there are multiple targets of
observation in the environment, the assumption is also
recursively applied to the targets in turn. Fig.9 shows
the lower bounds for possible observation points in front
of the obstacles in Fig.1. If the lower bound of a point
is higher than the incumbent value, the point can be
eliminated from the candidates.

1500

Figure 9: Lower bound of the cost for each observation
point which is less than the incumbent value (the cost
of the detour in this case). A robot is at (—250,0); the
observed features of the obstacles are at (—40,500) and
(40, 500).

5 Experimental Result

Fig.10 shows the experimental environment. A robot is
going to the goal point among obstacles. An optimal
vision-motion plan is generated from a pair of images
shown in Fig.4. The images are taken at the start po-
sition. In the experiment, we made the following as-
sumptions: only the positions of vertical segments in
front of the robot are unknown, that is, potential routes
(gaps) are given; the cost of taking a detour is given;
time for one observation is constant; uncertainty of mo-
tion is negligible because 1t is much smaller than that of
visual information.

From the first pair of images, three ambiguous match-
ings (see Fig.5) are detected which affect the plan gen-
eration. By considering both disambiguation of multiple
matchings (described in 3.4) and the possibility of oc-
clusion, the search area for the next observation point is
decided as shown in Fig.11(a).

Fig.11(b) shows the generated optimal plan. The solid
arrow indicates the next move, and dashed arrows indi-
cate possible paths after the next observation. By the
next observation, the ambiguities for three positions are
resolved. Only for the case that A and C are true po-
sitions, the passability of the narrow space may be un-
decided, and the second observation point is recursively
determined. Numbers attached to paths indicate the
probabilities of taking the paths. Of course, we cannot
predict which path the robot actually takes because ac-
tual behaviors depend on further observation results.

It takes about five minutes to generate the plan on
a SPARCstation (33MHz). About 65% of the candi-
dates for the next observation points are eliminated by
the pruning based on the lower bound. At deeper lev-



els of the search, more than 90% of the candidates are
eliminated in almost all cases.
effectiveness of the pruning.

This result shows the
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(a) An indoor scene. (b) Top view.

Figure 10: Experimental environment.
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Figure 11: Planning result.

6 Conclusions and Discussion

This paper describes an uncertainty model of stereo vi-
sion and its application to a vision-motion planning for
a mobile robot. In the model, the positional uncertainty
of a feature is represented by a weighted sum of normal
distributions; each distribution is calculated by a possi-
ble matching considering the quantization error; each
weight 1s decided according to the plausibility of the

matching. A strategy is also proposed which resolves
matching ambiguities by selecting a viewpoint to avoid
the ambiguities. The uncertainty model is used in the
vision-motion planner, and an optimal plan is generated
for a real world problem. An efficient solving strategy
is also described which employs a pruning method based
on the lower bounds calculated by the assumption of per-
fect sensor information. The pruning method effectively
reduces the computational cost.

Currently, the positional uncertainty of a segment is
modeled by the quantization error and the matching am-
biguity. It is a future work to consider other factors such
as the contrast of an edge segment.

The vision system provides only positions of line seg-
ments. It is necessary to determine whether a region
formed by the segments i1s an obstacle or a free space
[Faugeras et al., 1990]. Uncertainty of free spaces could
be modeled by using uncertainties described in this pa-
per.
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