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Abstract— This paper deals with generation of 3D environment
models. The model is expected to be used for location recognition
by robots and users. For such a use, very precise models are
not necessary. We therefore develop a method of generating
3D environment models relatively simply and fast. We use an
omnidirectional stereo as a primary sensor and additionally use
a laser range finder. The model is composed of layered contours
of free spaces, with textures extracted from images. Results of
modeling and application of the model to robot localization are
presented.

I. INTRODUCTION

3D environment modeling is one of the active research areas
in robotics and computer vision. Most previous works deal
with generation of precise 3D models using a large amount
of data and elaborate statistical and geometrical estimation
techniques. Thrun et al. [1] constructed a multi-planar model
from dense range data and image data using an improved
EM algorithm. The method was applied to a relatively simple
corridor environment surrounded mostly by large vertical
planes. Stamos and Allen [2] developed a method of photo-
realistic 3D model acquisition from a sequence of 3D range
data and that of 2D images. Fleck et al. [3] develop a method
of acquiring 3D models by a mobile robot with a laser scanner
and a panoramic camera. Sato et al. [4] developed a method
of dense 3D reconstruction from a long image sequence with
an automatic camera calibration procedure. Nevado et al. [12]
have also developed a method of 3D modeling from dense
range data. These works mainly focus on generating as precise
models as possible to be used for applications such as virtual
reality and tele-presence.

This paper deals with generation of 3D indoor environment
models with omnidirectional stereo and laser range finder.
The models are expected to be used for location recognition
by robots and users. Although 2D maps are often used for
localization [5], 3D and appearance information will be useful
for efficient location recognition. Very precise modeling is,
however, not necessary for such a use; rough geometry and
appearance would be enough. We thus develop a modeling
method of generating such approximate models efficiently.

Usual indoor environments in which many objects exist are
not formed only by vertical planes. To simplify the modeling
process while keeping a certain degree of geometrical infor-
mation in the model, we represent an environment with a set
of layered 2D contours with textures; contours in each layer
approximate the shape of 2D free space in a height interval.
We use an omnidirectional stereo as a primary sensor and
additionally use a laser range finder. Fig. 1 shows the mobile
robot used in experiments.
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Fig. 1. Our mobile robot.
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Fig. 2. Result of omnidirectional stereo.

II. TWO SENSORS

A. Omnidirectional Stereo

The stereo system uses a pair of vertically-aligned omnidi-
rectional cameras (see Fig. 1). The input images are converted
to panoramic images, in which epipolar lines become vertical
and in parallel; efficient stereo matching algorithms for the
conventional stereo configuration can thus be applied. The
system can generate the disparity image of 720x100 in size and
80 in disparity range. Fig. 2 shows a pair of omnidirectional
images, a panoramic image, and the result of disparity calcu-
lation. In the disparity image, larger disparities (nearer points)
are drawn in brighter color. Refer to [6] for more details.

Shirai-Lab 
Proc. IEEE/RSJ Int. Conf. onIntelligent Robots and Systems,pp. 3435-3440, Beijing, Oct. 2006.



X

Y

Z

free

occupied

sensor position

unknown

Fig. 3. Voxel classification.
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Fig. 4. Experimental environment. Fig. 5. 3D obstacle map.

B. Laser Range Finder(LRF)

We use a SICK laser range finder (LRF) for obtaining data
at lower height. It is set at the front of the robot so that it
scans the horizontal plane at the height of 35 [cm] from the
floor (see Fig. 1).

III. 3D OBSTACLE MAP GENERATION

The first step for our 3D environment modeling is to
generate a 3D obstacle map. We use a 3D voxel map as
the representation of obstacle map. Each voxel is a cube
whose edge length is 5 [cm], and holds the probability that
an obstacle exist there. We use the data within 3 [m] from the
robot position for map generation.

Stereo data usually include not only positional uncertainty
but also false data due to stereo matching failure. It is,
therefore, necessary to integrate data obtained at various robot
positions. This section explains a method of generating 3D
obstacle map by temporal integration of stereo data using a
probabilistic model of stereo uncertainty.

Rocha et al. [9] developed a method of probabilistic 3D
mapping and applied it to a simple environment surrounded
mostly by flat walls. Moravec [10] applied an evidence-grid
approach to 3D mapping using conventional stereo. We take
a similar approach in which we naturally extend our 2D
occupancy grid-based mapping method using omnidirectional
stereo and LRF[8] to 3D mapping.

A. Determining voxel attributes by one observation

We first determine the attribute of each voxel from one ob-
servation. Possible attributes are: occupied, free, and unknown.
Fig. 3 shows the attribute determination for a region within one
pixel in the panoramic image. The volume around an observed
point indicates the uncertainty in the range and direction
measurement by the omnidirectional stereo. This volume is
labeled as occupied. The volume before the occupied is labeled
as free. The volume behind the occupied is labeled as unknown
because no information is available in this volume. In the case
of stereo, all regions corresponding to the pixels in which any
obstacles are not detected (possibly due to the failure of stereo
matching) are labeled as unknown.

B. Probability update

Let O be the event that an obstacle is detected. O occurs at
occupied voxels; the inverse event O occurs at free voxels. For
such voxels, the probability is updated as follows. Let E be the
event that an obstacle exist, and let P (E) be the probability
that an obstacle exist (at a voxel). The new probability map

to be obtained by integrating a new observation is given by
the conditional probabilities: P (E|O) and P (E|O). These
probabilities are calculated by the Bayes’ theorem as follows:

P (E|O) =
P (O|E)P (E)

P (E)P (O|E) + P (E)P (O|E)
, (1)

P (E|O) =
P (O|E)P (E)

P (E)P (O|E) + P (E)P (O|E)
, (2)

where P (E) is the prior probability and E is the proposition
that an obstacle does not exist. Among the terms in the
above equations, P (O|E) and P (O|E) are observation models
described in [8]; P (O|E) = 1 − P (O|E); P (O|E) = 1 −
P (O|E); P (E) = 1 − P (E). Integration for each voxel
is performed independently of the others (the independence
assumption).

C. Map generation
We consider that a voxel with a probability higher than a

threshold (currently, 0.8) is occupied by some obstacle. A 3D
obstacle map is generated by collecting such voxels (obstacle
voxels). We guided the robot along the route shown in Fig.
4, and the robot acquired 100 pairs of stereo and LRF data.
Each observation location was obtained by our scan-matching
method [7]. It took about 390 [sec] to generate a 3D obstacle
map shown in Fig. 5. There are 63,147 obstacle voxels in the
map.

IV. GENERATING LAYERED CONTOURS FROM 3D
OBSTACLE MAP

We use a set of layered contours to model 3D environments.
Each layer represents a rough shape of 2D free space in
a height interval. We use four layers, three of which from
omnidirectional stereo data and one from LRF data, to cope
with objects and walls at various heights in usual indoor
environments.

To generate a contour fitting to object data in each layer,
We adopt active contour models [11] for determining the

contours. All contours in the four layers are simultaneously
refined so as to minimize an energy function, which considers
the contours’ smoothness, fitness to object data, the degree of
passing the 2D free space, and consistency between layers. A
contour is a set of connected vertical planes and is represented
as line segments in 2D. Initial contours are generated from
the 2D free space map, which is obtained by our 2D mapping
method [8].
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Fig. 6. The range of detecting initial plane segments.

A. Vertical division of the space
The omnidirectional stereo can reliably observe objects

whose heights are within the range between 60 [cm] and
160 [cm]. Typical objects existing in this height range are
tables and chairs, objects on tables such as PC, and shelves.
So we divide the height range detected by the stereo into the
following three layers:

• layer 1: from 60 [cm] to 85 [cm] for tables and chairs.
• layer 2: from 85 [cm] to 120 [cm] for objects on tables.
• layer 3: from 120 [cm] to 160 [cm] for shelves and other

high objects.
Objects lower than 60 [cm] are detected by LRF, which is
modeled in layer 0.

For layers 1 – 3, we divide the 3D obstacle map into the
corresponding three layers and project the obstacle voxels into
the 2D map of each layer. Each cell of the 2D map holds the
number of obstacle voxels at the corresponding 2D position.
We eliminate small clusters of obstacles in the free space.

B. Detection of initial vertical plane segments
As the robot moves, obstacle data on the left and the right

side are obtained. We separately detect initial plane segments
on each side. We detect line segments by selecting points on
the free space boundaries. The detailed steps for initial line
segment detection are as follows.

1) Start point selection: At the initial robot position, we
determine a start point on the boundary on each side of the
robot.

2) Iterative detection of segments: We iteratively extend the
line segments when the robot moves by a certain distance.
Since the we use range data within 3 [m] from the robot
position, the range data 3 [m] behind the robot or further will
not change. So the distance is set to 3 [m]. Fig. 6 shows a
series of robot positions with 3 [m] interval. Suppose the robot
is currently at position n. We search the free space boundary
at each side for line segments in the range corresponding to
positions from n− 2 to n− 1 so that the lengths of segments
become about 75 [cm]. Blue lines in Fig. 7 show the detected
initial plane segments. All layers use this same set of segments
as initial contours.

C. Refinement of segments using an active contour model

We refine the segments detected above so that they fit better
to obstacle data while keeping a certain degree of smoothness
and not entering the 2D free map. We also consider consis-
tency between layers in order to generate one 3D geometric
map representation.

1) Generation of control points: We use a piecewise-linear
model for 2D contours representing vertical planes in 3D. The
endpoints of the detected initial segments are used as control
points.

2) Energy function: We use the following energy function
for each control point:

E = αEinternal + βEexternal + γEbetween + εEfree, (3)

where each E∗ is a sub-function defined below and α, β, γ,
and ε are weights.

Einternal is for evaluating the smoothness of a contour and
for keeping segment lengths similar. This is defined as the sum
of the following three functions:

E1
internal = ||vc − vp|| + ||vc − vn||, (4)

E2
internal = ||(vn − vc) − (vc − vp)||, (5)

E3
internal = |||(vn − vc)|| − k| + |||(vc − vp)|| − k|, (6)

where vc is the position of the control point currently under
consideration, vp and vn indicate those of the previous and
the next points, respectively, ||·|| indicates the Euclidean norm
and k is a constant.

Eexternal is for evaluating the fitness to obstacle data and
defined as:

Eexternal = −G ∗ Iobs, (7)

where Iobs is the binary image representation of 2D obstacle
map in one layer (one pixel corresponds to 5 [cm] × 5 [cm]
cell), G is the Gaussian operator and ∗ denotes convolution.
σ of G is 4.0 [pixel] in layer 0, and 6.0 [pixel] in the other
layers.

Ebetween is for evaluating consistency between layers, and
defined using distance D1 to the contours in neighboring layers
as:

Ebetween =
{ − 100

D1+1 (0 ≤ D1 < 10)
0 (10 ≤ D1)

(8)

Efree is the penalty for entering the 2D free space, and
defined using distance D2 to the free space boundary as:

Efree =
{

D2 (inside free space)
0 (outside free space) (9)

The summation of E for all control points in all layers is the
objective function to be minimized. The minimization steps
are as follows (in C-like code):

// Sequential minimization
refine contour(){

// Minimize energy without Ebetween in each layer
apply acm(α1, β1, γ1, ε1)
// Minimize energy in all layer
apply acm(α2, β2, γ2, ε2)

}
//active contour refinement
apply acm(α, β, γ, ε){

while (true) do {
for i = 3 to 0 do {// Minimize energy in each layer

for each control point do {
Move to one of 8-neighbors
which minimizes the energy of the point; }}

if no point has moved in this round then break;
}}
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Fig. 7. Initial (blue) and final (red) plan segments. Black points represent
obstacle cells in each layer. The gray region indicates the free space.

We currently use the following weights in eq.
(3): (α1, β1, γ1, ε1) = (0.5, 250.0, 0.0, 300.0) and
(α1, β1, γ1, ε1) = (0.5, 250.0, 5.0, 300.0). Fig. 7 shows
the initial and the final plane segments. It is clearly shown
that final plane segments fit well to the object data while
having sufficient smoothness.

V. TEXTURE EXTRACTION AND MAPPING

Appearance of obstacles is useful for robot localization and
human-robot interface. We therefore extract textures from the
images taken by the omnidirectional camera and map them
to the constructed plane segments. The mapping between a
plane segment and a region in the omnidirectional image is
determined by geometry of omnidirectional imaging (see Fig.
8) and the relative position of the segment with respect to the
robot position where that image is taken.

We can extract textures for one plane segment from several
images taken at various robot positions. In order to get
the best textures, we select the image which provides the
highest resolution; that is, we select the robot position which
maximizes the area of the mapped region of the segment. The
extracted textures are stored as images of the size of 256×256
pixels.
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Fig. 8. Mapping a plane onto the omnidirectional image.

Fig. 10. 3D environment model (left) and actual environment (right).

VI. MODELING RESULTS

We have generated a 3D environment model for the environ-
ment shown in Fig. 4. The calculation times for generating the
initial set of segments and the convergence of active contours
for one update were 0.07 [sec] and 7.3 [sec], respectively. The
number of updates was 7. The calculation times for texture
mapping was 30.0 [sec].

Fig. 9 shows the overview of the acquired 3D model seen
from four different viewpoints. It well captures the overall
structure of the environment. We manually provided the height
of the ceiling and the textures of the ceiling and the floor in
advance in generating the final model.

Fig. 10 shows two views of the model observed at some
specific positions (left column) and compares them with the
real images taken by a digital camera at similar positions (right
column). Although discrepancies are found to some extent, it
seems sufficient for recognizing the location either by robots
and users. The location recognition by robots will be discussed
in the next section.

VII. LOCALIZATION USING THE GENERATED MODEL

The objective of this research is to develop a method of
generating 3D environment models which has the following
two properties:

• Simple and thus less costly to generate.
• Contain enough information for location recognition by

robots and users.



Fig. 9. Overview of the environment model seen from four different viewpoints. Blue arrows indicate their approximate viewing directions.

This section describes a localization method based on the
model to show the generated model potentially fulfills the
second property.

For localization, we use the observation positions where
the robot took data for modeling as candidate points. For
each candidate point, we compare the test data with the
environment model first using geometric information and then
using appearance (i.e., texture) information, and select the best
matched point.

The robot generates a local 3D map from several (currently,
10) consecutive data of omnidirectional stereo and LRF, and
uses it as the test data for localization.

The distribution of distances in all directions centered at the
robot is used as the representation of geometric property of a
location. For each candidate point, we extract plane segments
in the environment model within 3 [m] distance from the robot
and calculate the distribution of distances from the segments.
Fig. 11 shows the candidate points and the distribution of
distance at several points. We also make the distribution from
the local map. We compare two distributions using a simple
sum of the absolute difference (SAD) measure with changing
orientation (i.e., with shifting the distribution), and select a set
of candidate points with associated orientations which have
small differences.

We then use texture information for determining the best
position. For each remaining candidate point after the geom-
etry matching, we extract the region in the omnidirectional
image corresponding to the plane segments using the robot
pose (position and orientation) of the candidate point. Fig. 12
shows an example of the mapped region, model texture, and
texture of test data. We compare the model and test texture
using the SAD measure and determine the position which
minimizes the texture difference. Fig. 13 shows a result of
localization.

Fig. 11. 50 Candidate points (red) and examples of the distribution of
distances (at layer 2) at several candidate points.

We prepared a set of test data taken at 140 positions for
localization experiments. Table I shows the results. We tested
four cases in which the number of initial candidate points
and the number of candidate points kept after the geometry
matching. We judge that one of the test data and a candidate
point correctly matches if the distance between the position
of the data and the candidate point is less than or equal to
1.5 [m]. The fourth column of the table indicates the number
of test data which have the correct candidate point among the
remaining one after the geometry matching. The fifth column
indicates the number of test data which have the correct
candidate point as the best one. The result shows that our
3D model contains enough information for robot localization.
Use of filtering techniques would improve the localization
performance.



TABLE I

RESULTS OF LOCALIZATION EXPERIMENTS.

the number of the number of the ratio of candidate points the number of the number of success rate
test data candidate points after geometry matching correct geometry matching correct texture matching (%)

140 50 5 89 84 60
140 50 10 114 104 74
140 100 10 119 112 80
140 100 20 128 122 87

Region at (a) Model texture at (a) Test texture at (c)

Region at (b) Model texture at (b) Test texture at (c)

Fig. 12. Mapped regions and textures of model and test data at positions
(a), (b), and (c) in Fig. 13.

VIII. CONCLUSIONS AND DISCUSSION

This paper has described a method of generating 3D indoor
environment model by mobile robot with omnidirectional
stereo and laser range finder. The model is relatively simple
to generate but has enough geometric and texture information
to be used for location recognition by robots and users. The
model is generated by the following three steps: generation
of 3D obstacle map by temporal integration of stereo and
LRF data, detection of plane segments in four layers using
active contour model, and extraction and mapping of textures
from images. The resultant models look reasonable even for a
complex indoor environment.

The paper has also examined the applicability of the model
to robot localization. In localization, we compare a local
3D map with the global model in terms of geometry and
texture. By additionally using texture information, the robot
can be localized even in the case where there are several
geometrically-similar locations.

A future work is to speed up the modeling process. We
currently use all data acquired during the robot movement.
Since the sensors have large field of view, however, a part of
data could be enough for modeling, and reduction of data size
will decrease the computation time. We are now investigating
the relationship between the size of data and the quality of the
generated model. We also plan to test the method to various
indoor environment to examine its robustness. Another future
work is to use the model for location recognition by users.
Especially we expect that the model is used for the interface
for communicating location information between the robot and
the user.
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