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Abstract. Object search is one of the typical tasks for remotely-controlled
service robots. Although object recognition technologies have been well
developed, an efficient search strategy (or viewpoint planning method) is
still an issue. This paper describes a new approach to human-robot col-
laborative remote object search. An analogy for our approach is ride on
shoulders; a user controls a fish-eye camera on a remote robot to change
views and search for a target object, independently of the robot. Com-
bined with a certain level of automatic search capability of the robot, this
collaboration can realize an efficient target object search. We developed
an experimental system to show the feasibility of the approach.
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1 Introduction

Demands for remotely-controlled mobile robots are increasing in many applica-
tion areas such as disaster response and human support. One of the important
tasks for such robots is object search. To find an object, a robot continuously
changes its position and examines various parts of the environment. An object
search task is thus roughly composed of viewpoint planning and object recog-
nition. Although technologies for object recognition have been well developed
with recent high-performance sensors and the use of informative visual features,
viewpoint planning is still a challenging problem.

Exploration planning [1, 2] is a viewpoint planning for making a description
of the whole workspace. Efficient space coverage is often the goal to achieve in
this planning. Concerning object search, Tsotsos and his group have been devel-
oping a general, statistical framework of visual object search [3, 4]. Saidi et al.
[5] takes a similar approach in object search by a humanoid. Aydemir et al. [6]
utilize high-level knowledge on spatial relations between objects to select low-
level search strategies. We have also developed algorithms for efficient mapping
and object search in unknown environments (called environment information
summarization). Masuzawa and Miura [7, 8] formulated this problem as a com-
bination of greedy exploration ordering of unknown sub-regions and a statistical
optimization of viewpoint planning for object verification. Boussard and Miura
[9] formulated the same problem as an MDP and presented an efficient solution
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using LRTDP [10]. These works are for improving performance and efficiency of
automatic object search.

A human operator sometimes controls or supports the robotic exploration
and/or object search in a tele-operation context, where interface design is an im-
portant issue. Various design approaches are possible depending on how largely
the robot controller and the operator contribute to actual robot actions. When
the operator mainly controls the motion of the robot, an informative display of
the remote scene is required. Fong et al. [11] proposed a sensor fusion display
for vehicle tele-operation which can provide visual depth cues by displaying data
from a heterogeneous set of range sensors. Suzuki [12] developed a vision system
combining views from a usual camera and an omnidirectional one to provide a
more informative view of a remote scene. Saitoh et al. [13] proposed a 2D-3D
integrated interface using an omnidirectional camera and a 3D range sensor.
Shiroma et al. [14] showed a bird’s-eye view could provide a better display for a
mobile robot tele-operation than a panoramic or a conventional camera.

The idea of safeguard teleoperation (e.g., [15]) is often used in which the
operator gives a higher level command and the robot realizes it with keeping
safety. Shared autonomy is a concept that a human and a robot collaborate by an
even-contribution manner. Sawaragi et al. [16] deals with an ecological interface
design for shared autonomy for a tele-operation of a mobile robot. The interface
provides sufficient information for evoking the operator’s natural response. These
works do not suppose a high-level autonomy of the robot systems.

This paper describes a new type of human-robot collaboration in remote ob-
ject search. We suppose the robot has an enough level of autonomy for achieving
the task. Since the human’s ability of scene recognition is usually better than
those of robots, however, a human operator also observes a remote scene and
helps the robot by giving advice on the target object location. An analogy of
our approach is ride on shoulders; a boy on his father’s shoulders searches for a
target object and tells its location to the father, while the father is also searching
for it. The boy can also understand which direction the father is focusing and/or
moving. We realize this relationship by putting a fish-eye camera on a humanoid
robot and make the camera’s focus of attention be remotely controllable.

The rest of the paper is organized as follows. Section 2 explains the hardware
and software configuration of the system. Section 3 describes an automatic object
search strategy that the robot takes. Section 4 describes a camera interface for
the operator and human-robot interaction in the collaborative object search.
Section 5 summarizes the paper and discusses future work.

2 Overview of the System

Fig. 1 shows the hardware and software configuration of the system. The robot
we use is HIRO, an upper-body humanoid by Kawada, put on an omnidirectional
mobile base. It has three types of sensors. An RGB-D camera (Kinect) on the
head is used for detecting tables and object candidates. Two CCD cameras at
both wrists are used for recognizing objects based on the textures. Three laser
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Fig. 1. System configuration.

range finders (LRFs) (UHG-08LX by Hokuyo) on the mobile base are used for
SLAM (simultaneous localization and mapping).

The robot is equipped with a fish-eye camera (NM33-UVCT by Opto Inc.)
for providing the operator the image of the remote scene. The operator can
extract a perspective image of any direction using a 3D mouse (SpaceNavigator
by 3DConnecxion Inc.) so that he/she can search anywhere at the remote site for
a target object. The interface also provides the operator the state of the robot,
that is, where it is and where it is searching for the target object. A headset is
used for the operator to give voice commands to the robot.

The software is composed of multiple functional modules, shown by rounded
rectangles in Fig. 1. Each module is realized as an RT component in the RT-
middleware environment [17], which supports a modularized software develop-
ment. We use an implementation of RT-middleware by AIST, Japan [18].

3 Automatic Object Search

3.1 Algorithm of automatic object search

The task of the robot is to fetch a specific object in a room. Object candidates
are assumed on a table. The robot thus starts from finding tables in the room,
and then moves on to candidate detection and target recognition for fetching.
We deal with only rectangular parallelepipeds as objects, and extract and store
the visual features (i.e., color histogram and SIFT descriptors [19], explained
below) of the target object in advance. The sizes of objects are also known. The
algorithm of automatic object search is summarized in Fig. 2.

3.2 Object detection and recognition routines

Table detection Tables are detected from point cloud data taken by the Kinect
using PCL (Point Cloud Library) [20]. Assuming that the heights of tables are



Step 1: Detect all tables in the room using the RGB-D camera by turning the
neck.

Step 2: Choose the nearest and unexplored table and approach it.

(a) If it exists, goto Step 3.
(b) If not, go back to the initial position and report failure.

Step 3: Search for target object candidates using color histogram.

(a) If found, goto Step 4.
(b) If not, goto Step 2 (search another table).

Step 4: Approach candidates and recognize them using a SIFT-based recogni-
tion/pose estimation.

(a) If the target object is recognized, grasp it and go back to the initial
position.

(b) If not, goto Step 2 (search another table).

Fig. 2. Algorithm for automatic object search.

(a) Test scene. (b) Height filtering. (c) Detected table.

Fig. 3. Table detection.

between 70 [cm] and 90 [cm], planar segments with vertical normals in that height
range are detected using a RANSAC-based algorithm. Fig. 3 shows a table de-
tection result.

Candidate detection on a table Once a table to approach is determined, the
robot moves to the position with a certain distance to the table. The point cloud
data is again analyzed using PCL to extract data corresponding to objects on
the estimated table plane. The extracted data are clustered into objects, each
of which is characterized by a Hue histogram. A normalized cross-correlation
(NCC) is then calculated between the model and the data histogram to judge if
an object is a candidate. Fig. 4 illustrates the process of candidate detection.

input image detected objects target candidatesHue0 360 deg.

Hue histogram of the target

Fig. 4. Candidate detection. The rightmost object is the target.
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Object recognition using SIFT Each target object candidate is verified by
using a hand camera. SIFT features are extracted in each candidate object region
and matched with those in the model. If the number of matched features is above
a threshold, the target object is considered verified. The pose of the object can be
calculated from the pairs of the 2D (image) and the 3D (model) feature positions.
We use the cv::solvePnP function in the OpenCV library [21] for pose estimation.
Fig. 5 illustrates the object recognition and pose estimation procedure.

3.3 Mobile base control

The omnidirectional mobile base uses four actuated casters with a differential
drive mechanism [22]. The mobile base is also equipped with three LRFs, which
are used for an ICP-based ego-motion estimation provided by Mobile Robot
Programming Toolkit (MRPT) [23].

In detecting candidates on a table, the robot moves to a position which has a
certain relative distance (about 1 [m]) from the table so that the whole tabletop
can be observed. In recognizing the target object, the robot approaches the
table to obtain an enough number of SIFT features using the hand camera. The
positions for recognition are determined considering the placements of target
candidates on the table; nearer candidates are grouped to reduce the number of
movements in front of the table. The robot keeps a right-angle position to the
table in both observations. Fig. 6 illustrates a typical movement of the robot.

3.4 Arm and hand control

The hands of the robot is used for placing a camera above a candidate object
for recognition as well as pick and place operations. In the case of recognition,
the upper surface of each candidate is observed . The camera pose is defined in
advance with respect to the coordinate system attached to the corresponding
surface. For pick and place, we use a predefined set of grasping and approaching
poses, also defined with respect to the surface coordinates. We implemented



(a) Simulation/action for observation. (b) Simulation/action for picking.

Fig. 7. Hand motion generation.

Fig. 8. Experimental scene. There are three tables and the target object is on the
leftmost table with respect to the robot.

a point cloud-based collision check procedure, which can check both robot-to-
object collisions and self-collisions. Fig. 7 shows examples of hand movements
with collision checks.

3.5 Automatic object search experiment

We performed automatic object search experiments. Fig. 8 shows the experi-
mental scene. The robot examines tables in the right-to-left order because the
rightmost table is the nearest to the initial position. Since the target object is on
the leftmost table from the robot, it at least searches every table for candidate
detection.

Fig. 9 shows snapshots of an automatic object search. The search process
is as follows. After detecting three tables in the room (Step 1), the robot first
moved to the rightmost one to find a candidate (Step 2). Since the candidate was
not the target (Step 3), the robot moved to the center table where no candidates
were found (Step 4). It then move to the leftmost one to find a candidate (Step
5). Since the candidate was recognized as the target, the robot picked it up (Step
6) and brought it to the initial position (Step 7).



(a) Step 1: Detect three tables. (b) Step 2: Move to the first table and find a
candidate.

(c) Step 3: Fail to recognize (no target object). (d) Step 4: Move to the second table and find no
candidates.

(e) Step 5: Move to the last table and find a can-
didate.

(f) Step 6: Succeed to recognize and grasp the
target.

(g) Step 7: Go back to the initial position.

Fig. 9. Snapshots of an experiment of automatic object search. The views from the
robot are shown on the right at each step.

4 Collaborative Object Search

A child on his father mentioned in Sec. 1 is the analogy for the collaborative
object search in this work. The child does not walk by himself but looks around
to independently search for a target object, and once he finds it, he tells his
father of the location of the target. This is a kind of interruption to father’s
action, and the father takes the advice and moves to it.

To provide an independent view to the operator, a fish-eye camera is put on
the mobile base and is made controllable to the operator. The operator changes
the view for searching for the target and gives verbal advice to the robot.



(a) Setting of the fish-
eye camera.

(b) View the remote
scene and the robot.

(c) Zoom up the center
table in (b).

(d) Zoom up the left ta-
ble in (b).

Fig. 10. Fish eye camera and examples views.

4.1 Fish-eye camera-based interface

The fish-eye camera is set at the rear of the robot as shown in Fig. 10(a).
This setting enables the operator to view not only the remote scene but also
the robot’s state (see Fig. 10(b)). The camera has a function of extracting an
arbitrary part of the fish-eye image and converting it to a perspective image.
The operator can thus control the pan/tilt/zoom of a virtual camera using the
3D mouse. Fig. 10(b)-(d) show examples of images taken from the same robot
position.

4.2 Voice command-based instruction

The operator uses voices to instruct the robot to take a better action than
the robot’s current one. Since the task (i.e., target object search) is simple,
instructions used are also simple enough to be easily used by the operator. Table
1 summarizes the voice instructions and the corresponding robot actions to be
invoked.

Table 1. Voice instructions

Voice instruction Robot action

“Hiro” (name of robot) Stop action

“Left table” Look at the table on the left

“More to the left” Look at the table next to the left one

“Right table” Look at the table on the right

“More to the right” Look at the table next to the right one

“Come back” Come back to the initial position

“Search there” Move to the table in front of the robot for search



4.3 Collaborative search experiments

Fig. 11 shows snapshots of a collaborative object search when the target exists
in the scene. After detecting three tables in the room (Step 1), the robot moved
to the rightmost one. While this movement, the operator found the target on the
leftmost table and said “Hiro” to stop the robot (Step 2). The operator then said
“left table” and the robot looked at the center table (Step 3). Since the target
is on the table at the left side of the current one1, the operator further said
“more to the left” and the robot looked at the leftmost table (Step 4). Then the
operator said “search there” and the robot moved to that table (Step 5). As the
robot found a candidate, it approached the table (Step 6). Since the candidate
was recognized as the target, the robot picked it up (Step 7) and fetched it to
the initial position (Step 8).

Fig. 12 shows snapshots of a collaborative object search when the target
does not in the scene. After detecting three tables, the robot moved to the
rightmost one and further approached it because a candidate was found (Step
1). Recognition using a hand camera failed (Step 2). While the robot was moving
to the next table, the operator noticed that there were no target objects in the
room and said “Hiro” to stop the robot (Step 3). The robot stopped searching
and came back to the initial position (Step 4).

4.4 Comparison of automatic and collaborative search

In collaborative search, the operator observes the remote scene from a distant
place through a fish-eye camera and a display and, once he finds the target, he
interrupts the robot and instructs the place to search (or orders to stop search).
Appropriate operator’s advice keeps the robot from examining tables without
targets, thereby reducing the total cost of search.

We compared the automatic and the collaborative object search in terms of
the total search time, the number of tables examined for candidates, and that of
candidates examined for target recognition. Table 2 summarizes the comparison
results. The collaborative search is more efficient than automatic one by the
timely advice from the operator to the robot.

5 Conclusions and Future Work

This paper describes a novel type of human-robot collaboration for object search.
Analogy to the child-on-the-shoulder case, the operator examines the remote
scene through a camera on the robot, by which he can observe the state of
the robot as well as the scene, and gives timely advice to the robot. We have
implemented an experimental system and shown the collaborative object search
is more efficient than automatic one in several preliminary experiments.
1 Note that the operator was able to see which table the robot is looking at through

a fish-eye camera



(a) Step 1: Detect three tables. (b) Step 2: While the robot moves to the first
table, the operator finds the target objects and
orders it to stop.

(c) Step 3: The operator says “left table” and the
robot looks at the center table.

(d) Step 4: The operator says “more to the left”
and the robot shift the focus on the leftmost one.

(e) Step 5: The operator says “search there” and
the robot move to the table.

(f) Step 6: Detect a candidate and approach to
the table.

(g) Step 7: Recognize the target and pick it up. (h) Step 8: Go back to the initial position.

Fig. 11. Snapshots of an experiment of collaborative object search. The views from
the robot are shown on the right at each step.

The current system deals with only object on tables. Extending the space
to search to various locations (e.g., in the shelf) is desirable. This will require
increasing voice instructions so that various places can be specified. Commu-
nications between the operator and the robot could be more interactive, since
the current communication is unidirectional (from operator to robot). The robot
may want to actively ask about probable place of a target object or ask the oper-
ator to examine some place where the robot thinks objects probably exists. Such
kinds of interactions, which may be observed in actual child-father interactions
are expected to make the collaborative search much more efficient.



(a) Step 1: The robot approaches to the first ta-
ble to recognize the candidate.

(b) Step 2: Recognition fails.

(c) Step 3: While the robot moves to the second
table, the operator notices that no target exist
and says “Hiro” to stop the robot.

(d) Step 4: The robot stops searching and comes
back to the initial position.

Fig. 12. Snapshots of another experiment of collaborative object search when the target
object does not exist in the scene. The views from the robot are shown on the right at
each step.

Table 2. Comparison of automatic and collaborative search.

Case 1: the target object exists in the room.
method search time # of table examined # of candidates examined

automatic 5 min. 20 sec. 3 2

collaborative 3 min. 33 sec. 1 1

Case 2: the target object does not exist in the room.
method search time # of table examined # of candidates examined

automatic 4 min. 47 sec. 3 2

collaborative 3 min. 36 sec. 1 1

References

1. A.A. Makarenko, S.B. Williams, F. Bourgault, and H.F. Durrant-Whyte. An Ex-
periment in Integrated Exploration. In Proceedings of 2002 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, pp. 534–539, 2002.

2. R. Martinez-Cantin, N. de Freitas, R. Brochu, J. Castellanos, and A. Doucet.
A Bayesian Exploration-Exploitation Approach for Optimal Online Sensing and
Planning with a Visually Guided Mobile Robot. Autonomous Robots, Vol. 27, pp.
93–103, 2009.

3. Y. Ye and J.K. Tsotsos. Sensor Planning for 3D Object Search. Computer Vision
and Image Understanding, Vol. 73, No. 2, pp. 145–168, 1999.

4. K. Shubina and J.K. Tsotsos. Visual Search for an Object in a 3D Environment
Uing a Mobile Robot. Computer Vision and Image Understanding, Vol. 114, pp.
535–547, 2010.



5. F. Saidi, O. Stasse, K. Yokoi, and F. Kanehiro. Online Object Search with a
Humanoid Robot. In Proceedings of 2007 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 1677–1682, 2007.
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