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Abstract

This paper describes a view-based outdoor navigation
method. In the method, a user first guides a robot along
a route. During this guided movement, the robot learns
a sequence of images and a rough geometry of the route.
The robot then moves autonomously along the route with
localizing itself based on the comparison between the
learned images and input images. Since appearances of
objects in images may vary much according to changes
of seasons and weather in outdoor scenes, a simple im-
age comparison does not work. We, therefore, propose
a comparison method in which the robot first recognizes
objects in images using object models which allow for ap-
pearance variations, and then compares recognition re-
sults of learned and input images. We also developed a
method which automatically selects key images used for
the comparison from an image sequence. Successful au-
tonomous navigation experiments in our campus under
various conditions show the feasibility of the method.

1 Introduction

Vision-based outdoor navigation of mobile robots is one
of the active research areas in robotics. Many previous
works use local visual features such as road boundaries
for controlling robot motion [3, 1]. If such features are
not necessarily available, methods for global localization
are required for navigation.

Recently, many works have started using GPS for local-
ization (e.g., [11]). GPS can usually provide reasonably
accurate position information, but is not fully reliable be-
cause it cannot work well near a tall building due to multi-
path problems or occlusion of satellites.

Outdoor environments are generally much more complex
and wider than indoor environments, so it is usually dif-
ficult for a user to give a robot a map of the environment
in advance. A promising approach is thus the following
two-phase one: a user first guides a robot along a route for
learning the environment and then the robot moves along
the route autonomously using the learned knowledge.

Several two-phase methods have been proposed, each of
which has a different map representation and a map ac-

quisition method. Kidono et al. [5] used a set of land-
marks obtained by stereo as a map. Maeyama et al. [7]
recorded odometry data and landmark positions around a
guided path. These methods use nearby objects as land-
marks and assume such objects are static; they may not be
applicable to the case where objects such as cars change
their positions in the learning and the navigation phase.

Views of objects are useful cues for global localization.
Matsumoto et al. [8] developed a navigation method
which is based on an image sequence obtained in the
learning phase. Li [6] proposed a similar method for a
panoramic image obtained by a movement along a route.
Takeuchi et al. [10] developed a localization method
based on a similarity between color distributions in an
input image and a learned image. These methods do not
consider color changes of objects according to changes
of weather and/or seasons and, thus, the localization may
not be robust enough.

Although appearances of objects may vary depending on
weather or seasons, the location of relatively large objects
such as buildings and trees do not change. We, therefore,
propose a global localization method based on a compari-
son of such large objects in input and learned images. The
most important issue is thus to develop an object recog-
nition method robust to changes of weather and seasons.

We take a knowledge-based approach to outdoor scene
recognition (e.g., [9, 2]). A feature of ours is to use mul-
tiple object color models which consider their variations
according to changes of weather and seasons. We also
use a flexible recognition and matching method which al-
lows for multiple hypotheses on the type of a region in
recognition; such a hypothesis ambiguity is resolved by
adopting a flexible matching.

Our robot primarily uses vision for global localization but
additionally uses odometry and GPS (where available) to
obtain a rough estimate of robot position. It also uses a
laser range finder to locally avoid obstacles.

2 Object Recognition
We are currently interested in navigation in our campus,
where buildings, trees, cars, bicycles, and other small ob-
jects exist. Since cars and bicycles are different time to
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(a) (b) (c) (d)Fig. 1: Input color images.
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Fig. 2: Recognition results of uniform and sky regions.
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Building region.

Fig. 3: Recognition results of building regions.
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Tree region. Tree-possible region.

Fig. 4: Recognition results of tree regions.

time, we use buildings, trees, and the sky which exist in
the upper half of input images as landmarks, and develop
methods for recognizing them. Specifically, we consider
the following four object regions:

• Uniform regions: large uniformly-colored regions
corresponding to sidewalls of buildings.

• Sky regions: regions corresponding to the sky.
• Building regions: regions with long segments corre-

sponding to windows and boundaries of buildings.
• Tree regions: regions corresponding to trees.

In recognizing an image (resolution is 304 (width) × 128
(height)), we divide an image into a set of small windows,
examine colors and edges of each window, and classify
the window into one of the above objects based on the
colors and the edges.

2.1 Recognition of Uniform and Sky Regions

The sky and sidewalls of buildings usually constitute
large uniform regions in images, so we first extract such
regions and then classify them.

We divide an image into windows of 8 × 8 pixels in size,
and extract edges whose magnitudes by Sobel operator
are larger than a threshold (currently, 10) in each win-
dow. If the number of edges is less than a threshold (cur-
rently, 10) and if the variances of R, G, and B values are
all less than a threshold (currently, 300), the window is
extracted as a uniformly-colored one. Such windows are
then merged into large uniform regions.

From the knowledge of position, color, and shape of the
sky in the image, we define the following condition that
a region is the sky:

• It touches the upper boundary of an image.
• Its average intensity is larger than 120 (in 8 bits).
• It is composed of 10 or more windows.
• The width of its upper part is larger than that of its

lower part.

If the color of the sky gradually changes, or if there are
blue sky parts and clouds parts in the sky, the sky is di-
vided into smaller uniform regions and thus may not be
recognized as a single sky region at first. So we examine



regions adjacent to sky regions which have already been
recognized, and if such an adjacent region satisfies the
following conditions:

• Its average intensity is larger than 120.
• The number of edges on the boundary between the

region and adjacent sky regions is small enough
(currently, 0.075%).

• The boundary length with respect to the area of the
region is longer than a threshold (currently, 0.15).

then this region is classified as a sky region. This exami-
nation is repeated until no more sky regions are found.

After extracting sky regions, the remaining uniform re-
gions which do not touch the upper boundary of an image
are classified as uniform regions. For the rest of uniform
regions (which touch the upper boundary), if a region has
a straight-line boundary at the top of the region, the re-
gion is classified as a uniform region; otherwise, we con-
sider that we cannot determine the class of the region and
call it a sky-or-uniform region.

Fig. 2 shows the recognition results of sky and uniform
regions in the images shown in Fig. 1. In Fig. 2(b), a
sidewall of a building on the left is classified as a uniform-
or-sky region because the boundary between the building
and the sky is not strong enough. In Fig. 2(c), a sidewall
in the center is merged with the sky region. The rest parts
are all correctly recognized.

2.2 Recognition of Building Regions
Boundaries of buildings and windows have long straight
edge segments. We use such edge segments as cues for
detecting buildings. For detecting long edges, we divide
an image into windows of 16 × 16 pixels in size, and ex-
tract edges whose magnitudes are larger than a threshold
(currently, 30) in each window. If the number of edges is
larger than a threshold (currently, 10), we apply a Hough
transform to detect long straight edge segments. We then
merge connected windows having such edge segments
and if a merged set of windows is large enough (com-
posed of 10 or more windows), the windows are recog-
nized as building regions. Fig. 3 shows the recognized
building regions in the input images shown in Fig. 1.

2.3 Recognition of Tree Regions
Tree regions have a large number of edges of branches
and leaves. We divide an input image into a set of win-
dows of 8 × 8 pixels in size, and if the number of edges
of a window is equal to or larger than a threshold (cur-
rently, 10) and the number of pixels whose colors match
with that of trees exceeds a threshold (80% of the window
size), the window is classified as a tree region.

Colors of trees vary according to changes of weather and
seasons. We manually extracted tree regions in various
scenes, and examined the relationship between intensity
(T ) and hue (θ) in these regions. Fig. 5 shows the rela-
tionships in four cases. In the case of leaves in the sun

in summer (see Fig. 5(a)), the hue value does not change
much even if the intensity changes. In the case of leaves
in the shade in summer (see Fig. 5(b)), the hue shifts to
blue due to the ambient light from the blue sky, especially
in low-intensity regions. In the case of colored leaves in
fall (see Fig. 5(c)(d)), the hue slightly shifts to red. We
also examined cloudy cases and found that the intensity
becomes smaller but the hue does not change much. From
these examinations, we model the leaf colors by the four
polygonal regions in Fig. 5. If the number of pixels in a
window whose colors match with at least one of models
(a) and (c) in Fig. 5 exceeds a threshold (currently, 80%
of the window size), the window is classified as a tree re-
gion. If the number of pixels in a window whose colors
match with at least one of models (b) and (d) in Fig. 5
exceeds the same threshold, the window is classified as
a tree-possible region, since it may be a tree region but
cannot be definitely determined to be so.

In the case of trees with leaves being fallen, background
objects may be visible through branches, and their colors
may not match with the tree color models. Concerning
edges of branches and leaves, in general, their magni-
tudes are weak and their directions are widely distributed.
Fig. 6 shows example distributions of accumulated edge
magnitudes for a tree region without leaves, that with
leaves, and a building region. The resolution of direc-
tion is 20 degrees; the accumulated edge magnitude in
each direction is normalized by the number of edges in a
window. The figure clearly indicates that tree regions has
a much lower maximum value than the building region.
From this observation, we calculate this distribution for
a region which has an enough number of edges but has
a different color from the tree color models, and if the
maximum value is less than a threshold (currently, 12),
the region is classified as a tree-possible region.

Fig. 4 shows the recognition result of tree regions in the
images shown in Fig. 1. Note that both green and colored
leaves are correctly recognized.
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(a) Leaves in the sun in summer.
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(b) Leaves in the shade in summer.
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(c) Colored leaves in the sun in fall.
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(d) Colored leaves in the shade in fall.

Fig. 5: Relationship between intensity (T ) and hue (θ).
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(a) Trees without leaves. (b) Trees with leaves. (c) Buildings.
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Fig. 6: Distributions of accumulated edge magnitudes.
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Fig. 7: Similarity between regions is
given by A ∩ B / A ∪ B.

3 Evaluation of Matches between Images

A match between two images is evaluated by the similar-
ity of recognition results of every object in both images.
The object recognition method outputs four object re-
gions in an image. If two images are taken at roughly the
same robot position and orientation, the positions of these
object regions in the images should be similar. Since
we do not need a very accurate localization, we calculate
similarity values for a certain range of relative displace-
ments between two images (obtained by shifting one of
the images) and use the highest similarity value as the
evaluation of the match between the images.

For each object, the corresponding regions are obtained
in both images. The similarity for the object is given by
the ratio of the area of the intersection of the regions to
that of the union of them (see Fig. 7). We require that the
similarity of each object is higher than a threshold for a
successful match. The similarity value of a match is then
given by the average of those similarity values. When
the areas of an object is small in both images, however,
we do not take the object into consideration because the
recognition result of the object is not reliable. Finally, if
the similarity of a match is larger than a certain threshold,
the match is considered to be successful.

Regions which have not been recognized definitely to be
an object (i.e., uniform-or-sky and tree-possible regions)
are specially treated in matching. A uniform-or-sky re-
gion is treated as a sky region only when the correspond-
ing region in the other image is a sky region; otherwise it
is treated as a uniform region. Concerning a tree-possible
region, since it is sometimes detected erroneously in a
dark region, it is treated as a tree region only when the
corresponding region is a tree region; otherwise, we ig-
nore the region as a false detection.

Parameters used in matching are determined as follows.
We first set the allowable amounts of the horizontal shift
(dx) and the vertical one (dx) to [−40, 40] and [−24, 24]
in pixels, respectively, by considering the change of the
robot orientation during autonomous movements. To re-
duce the computation time, actual shift values are se-
lected every 8 pixels in both direction.

The thresholds on the area and the similarity of an ob-
ject depend on the object. An object which is usually
recognized stably can be reliably used in matching, even

An input image.

A sky-or-uniform region.

Tree regions. Tree-possible regions.

Fig. 8: An input image and its recognition result.

Table 1: Matching result between images in Fig. 1-(d)
and Fig. 8.

smax dx dy sU sS sB sT

0.590 -32 16 — 0.625 — 0.556

if its area is small. Our recognition method recognizes
objects in the following descending order of recognition
stability: the sky, trees, uniform regions, and buildings.
So we use 6% and 18% as the thresholds on the area for
the first three and the last one, respectively. Concern-
ing the threshold on the similarity, 0.6, 0.3, and 0.2 are
used for sky regions, tree regions, and uniform or build-
ing regions, respectively. We use 0.4 as the threshold for
judging whether two images are matched.

Table 1 shows the matching result for the images shown
in Fig. 1(d) and Fig. 8. Fig. 8 also shows the recog-
nition results. The table indicates the similarity values
for the match (smax), sky regions (sS), and tree regions
(sT ), and the best shift (dx, dy). The similarity value for
building regions is not obtained because the regions are
small in both images. That for uniform regions is not used
either because the sky-or-uniform region in Fig. 8(a) is
considered to be the sky in matching with the sky region
in Fig. 2(d).

4 Navigation Strategy
We consider that a route consists of corners and straight
paths connecting them, and prepare different navigation
strategies for these two types. When moving along a
straight path, the robot repeatedly performs the image
matching for localizing itself and for determining a tar-
get direction; it moves towards the direction by a visual
feedback using two cameras pointing both forward and



backward [4]. For turning at a corner, the robot first de-
tects it using odometry and GPS (if available), and then
determines a point to start turning based on the image
matching and range finder data.

To realize these strategies, the robot records the following
data during a guided movement. For a straight path, it
records a sequence of images and odometry data of the
positions where these images are taken. From the image
sequence, a set of images, called key images, are selected
which are used for the image matching (see Sec. 5). For a
corner, the robot records the image just after turning and
the location of the corner obtained by odometry and GPS.

To avoid collision with obstacles such as parking cars,
the robot continuously measures the distance to nearby
objects using a laser range finder, and takes a collision-
avoidance movement if necessary.

5 Selection of Key Images
Key images are selected as follows. At a corner, a key
image is the one taken when the robot finished turning,
and is easily selected by detecting a turning motion us-
ing odometry. For a straight path, since the robot usually
performs a zigzag motion when guided by a user, it is im-
portant to select images which were taken when the robot
certainly directed towards a next corner.

In a zigzag motion of the robot, the change of the robot
orientation is considered to be roughly approximated by
a trigonometrical function. If the function is almost sym-
metric about the path the robot is following, time points
when the robot directs right forward can be detected by
extracting images where the absolute value of image mo-
tion (optic flow) is locally maximum. Fig. 9 shows the
change of the averaged horizontal image motion during
the movement between points (a) and (b) in Fig. 10. ×
marks in the figure indicate the frames which were manu-
ally selected as key images; all selected key images are al-
most at local maxima. At the same time, it is not good to
use all such images because two images taken at a small
position interval are usually very similar to each other.
So we repeatedly select key images among such images
so that each key image does not successfully match with
previously-selected ones [8].

6 Experimental Results
We performed several experiments for testing the recog-
nition, matching, and navigation methods using the path
shown in Fig. 10.

6.1 Recognition and Matching
We first prepared 43 key images from an image sequence
taken on the path from Start to point (d) (see Fig. 10)
on Apr. 19, 2002 (sunny) and another sequence on the
path from point (d) to Goal on Sep. 21, 2002 (sunny).
We then obtained three sequences of input images with
1 [sec] interval by guiding the robot on the path.
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Fig. 9: Change of image motion.
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50m

Start and Goal

Fig. 10: The path for experiments.

We manually assigned two consecutive key images to
each input image as correct matches. The details of input
images and the matching results are summarized in Ta-
ble 2. About 95% of the input images were successfully
matched with the corresponding key images. About 57%
of the successful matches gained the maximum similarity
for the correct key images. There are two cases where
correct matches failed to gain the maximum similarity.
One is the case where images were taken at positions
where the change of view according to the robot motion
is small; the other is the case where the maximum sim-
ilarities were obtained for the key images of completely
different positions. Since the matching considers the his-
tory of movement in the autonomous navigation phase,
such failure of gaining the maximum similarity did not
cause a navigation failure.

Table 2: Image details and matching results
Date of image input 3/10/02 10/2/02 1/11/03

Weather cloudy sunny cloudy
Start Position (a) (b) Start
Goal Position (e) (e) Goal

Status of leaves partially partially partially
fallen colored fallen

Number of images 124 125 472

success Max. similarity 60 93 243
Otherwise 57 28 210

failure 7 4 19



(c) (e)
Fig. 11: Key images.

(c) (e)
Fig. 12: Input images.

The time for recognition and matching is about 1 [sec]
in average using a PC with Pentium II (400MHz). Our
recognition and matching method uses many parameters
(or thresholds) as explained above. Although the param-
eters were tuned by experiments, they seem to work well
under a large variety of conditions.

6.2 Autonomous Navigation
We describe the result of a navigation experiment on Jan.
13, 2003 (cloudy), which used the manually-selected key
images mentioned above. The robot successfully moved
along the whole path of about 350 [m] in Fig. 10 in about
11 minutes. On the path between points (g) and (h), since
GPS data were not available, the robot detected the ap-
proach to corner (h) by odometry. Figs. 11 and 12 show
the key images and the successfully-matched input ones
at corners (c) and (e), respectively. Fig. 13 shows snap-
shots of the experiment.

We conducted similar experiments 20 times, including
the case of using a part of the path, from Sep. 2002 to Jan.
2003. During the experiments, the robot successfully rec-
ognized 47 out of 48 corners; one failure case is that tree
colors changed too much due to a backlight. The robot
failed in matching 27 out of 269 times; these matching
failures did not cause a navigation failure, however, since
the robot succeeded in the subsequent matchings.

6.3 Two-Phase Approach
We then tested the feasibility of the two-phase approach.
That is, we first guided the robot along the path shown
in Fig. 10 and the robot followed the path based on
automatically-extracted key images. We performed the
same experient twice in Mar. 2003 and succeeded in both
trials.

7 Conclusions and Discussion
This paper has proposed an outdoor navigation method
which localizes a robot by comparison of recognition re-

Fig. 13: Snapshots of autonomous navigation.

sults of input and learned key images. Using multiple
color models makes the localization robust to changes of
weather and seasons. We have also developed a method
for automatically extracting key images from an image
sequence based on the motion analysis of the sequence.
We successfully applied the method to the navigation of
our robot in our campus under various conditions.

The recognition of the corner is, at present, critical to
the success of navigation. We are now developing a
method for detecting and recovering from a failure of cor-
ner recognition. We are also planning to perform exper-
iments at various other places in our campus to test the
robustness of the system in more detail.
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