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Abstract

Information on the surrounding environment is necessary for a robot to move autonomously.
Many previous robots use a given map and landmarks. Making such a map is, however, a
tedious work for the user. Therefore this paper proposes a navigation strategy which re-
quires minimum user assistance. In this strategy, the user first guides a mobile robot to a
destination by remote control. During this movement, the robot observes the surrounding
environment to make a map. Once the map is generated, the robot computes and follows
the shortest path to the destination autonomously. To realize this navigation strategy, we
develop: (1) a method of map generation by integrating multiple observation results con-
sidering the uncertainties in observation and motion, (2) a fast robot localization method
which does not use explicit feature correspondence, and (3) a method of selecting effective
viewing directions using the history of observation during the guided movement. Experi-
mental results using a real robot show the feasibility of the proposed strategy.
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1 Introduction

Recently, many studies have been conducted on au-
tonomous navigation of mobile robots. Information
on the surrounding environment is necessary for a
robot to move autonomously. There are navigation
methods [1,4,7] which use a given map and land-
marks. It is, however, a tedious work for the user to
make a map and to specify landmarks. Therefore we
propose a navigation strategy which requires mini-
mum user assistance. In our strategy, the robot oper-
ates in two phases: map generation and autonomous
navigation. In the map generation phase, the user guides
a mobile robot to a destination. During this move-
ment, the robot observes the surrounding environ-
ment to make a map. Once the map is generated, the
robot computes and follows the shortest path to the
destination autonomously.

Kanbara et al. [2] proposed a similar two-phase method
for an indoor mobile robot; they considered only one
dimensional movement in a linear corridor. Maeyama
et al. [5] also applied a similar approach to a two-
dimensional outdoor robot navigation. In their method,
the user selects as landmarks specific objects, such as
trees and bushes, and provides the robot with recog-
nition programs for such objects in advance; other
objects cannot be used as landmarks. In addition, since
only selected landmarks are recorded in the map, the
robot should follow the guided path in the autonomous
navigation phase. Matsumoto et al. [6] proposed to
use the sequence of images which is obtained during
a human-guided movement for navigating the robot.
Their robot also has to follow the guided path in the
autonomous navigation phase. In addition, such an
image-based method is easily affected by the change
of lighting condition.

There are many works on automatic map generation
(e.g., [8,10,11]). By combining these methods with
the results of the work on autonomous navigation
with a given map, the above-mentioned two-phase
approach may be realized. In our method, however,
the robot records in the map not only feature po-
sitions but also the robot positions where such fea-
tures were observed (i.e., viewpoints), and the infor-
mation on viewpoints is used for selecting viewing
directions in the autonomous navigation phase. Such
information has not been considered in previous re-

searches on map generation, and in order to utilize
the information, it is desired to develop the map gen-
eration and map-based navigation methods together.

The outline of the proposed method is as follows.
During a human-guided, non-stop movement, the robot
repeatedly observes the environment with stereo vi-
sion and generates a map. The map is incrementally
generated by integrating each observation result into
the latest map. Since the robot movement includes
uncertainty, the robot position is estimated before in-
tegration by matching the latest map and the new
observation. Once the map is generated, the robot
can move autonomously from the start point to the
destination. Since the guided path may not be op-
timal, the robot calculates a minimum-distance safe
path and follows it. During autonomous movement,
the robot also estimates its position as in the case
of the map generation. Since better position estima-
tion generally realizes more efficient robot naviga-
tion, the robot selects the viewing direction at each
viewpoint so that the localization error is minimized.

The proposed method is developed for static envi-
ronments; that is, the environment in the autonomous
navigation phase is assumed to be the same as that in
the map generation phase; we also suppose that if un-
known obstacles appear during movement, the robot
detects them using other sensors such as sonar.

2 Map Generation

2.1 Stereo Vision

We use a stereo vision to obtain range data of the sur-
roundings. The left and the right cameras are set on
the mobile head and their optical axes are horizon-
tal and in parallel with each other. For each feature
point (edge with a high contrast) in the right image,
the matched feature point is searched for along the
horizontal epipolar line. The degree of matching is
evaluated by the sum of absolute difference (SAD)
of the intensity values in 5× 5 window, W , around a
feature point:

∑

(i,j)∈W
|fL(x+ i+ d, y + j) − fR(x+ i, y + j)| ,(1)
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where fL(x, y) and fR(x, y) indicate the intensity
values of the point (x, y) in the left and the right im-
ages, respectively, and d represents the disparity. A
pair of points is considered to match if the SAD value
is small enough and minimum among all SAD values
computed within the possible disparity range. Fig.
1(a) shows an example stereo images and Fig. 1(b)
is the disparity image calculated from the stereo im-
age. Darker points indicate larger disparities (nearer
points).

(a) stereo image.

(b) disparity image.

Fig. 1. Stereo image and disparity image.

2.2 Object Boundary Extraction

We make a 2D map which records object boundaries.
We extract points on the boundaries (called object
points) as follows. The 3D position of each matched
point in the image is calculated from its disparity. We
first exclude the points which are on the ceiling or on
the floor. Since the observation direction is specified
by the column of the disparity image, we then com-
pute the histogram of the disparity in each column
and select the largest disparity whose frequency is
higher than a certain threshold (see Fig. 2). The dis-
parity with low frequency is not selected because it
is likely to be caused by false stereo matches. We fi-
nally record the object point which has the selected
disparity in each column; its positional uncertainty is
also recorde.

The calculation of disparity images and the extrac-
tion of object points are performed on a realtime im-

age processor with multiple DSPs [9]. The process-
ing speed is 7.5 frames per second.
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Fig. 2. Histogram of disparity and object boundary extraction.

2.3 Positional Uncertainty of Object Point

From the disparity of an object point, its 2D position
xr in the scene with respect to the robot position is
calculated as (see Fig. 3):

xr = F (I) =
1

Xl −Xr



a(Xl +Xr)

2af


 , (2)

where I = [Xl,Xr]
T (Xl and Xr are the horizon-

tal position in the left and the right images, respec-
tively)，f is the focal length, and 2a is the baseline.
The position of the object point in the world coordi-
nates is then calculated using the robot position and
orientation when the object point is observed.
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Fig. 3. Stereo geometory
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The positional uncertainty is estiamted as follows.
We suppose that the position in the image includes
the error caused by image quantization, and that the
errors in both images are independent of each other;
the covariance matrix ΛI of [Xl, Xr]

T is given by:

ΛI =



σ2
Xl

0

0 σ2
Xr


 . (3)

By using the Taylor series expansion with neglecting
higher order terms, the stereo uncertainty Λr of xr is
calculated by [3]:

Λr =
∂F

∂I
ΛI

∂F

∂I

T

. (4)

The positional uncertainty Λ of the object point in the
world coordinates is calculated by first applying the
rotation between the robot and the world coordinates
(let Λ′

r be the uncertainty after rotation) and by then
adding the uncertainty of the robot position Λl. Λ is
given by:

Λ = Λ′
r + Λl. (5)

We will describe later how to calculate the robot po-
sition and its uncertainty in Sec. 2.5.

2.4 Integration of Multiple Observations

2.4.1 Finding Correspondence between Obser-
vation and Map

We integrate the observation result with the map to
reduce the positional uncertainty of object points. For
this purpose, we need to find the correspondence be-
tween the object points in the observed data and the
ones in the map.

For each observed point, we search for the corre-
sponding point in the map which satisfies the follow-
ing condition:

(xo − xm)T (Λo + Λm)−1(xo − xm) ≤ 9, (6)

where subscripts o andm represent the observed point
and the point in the map, respectively. The left side of
this inequality is the Mahalanobis distance between

two points; this condition states that the two points
can be matched if their relative distance is within the
so-called 3σ range. If there are several candidates for
corresponding points, the one with the minimum Ma-
halanobis distance is considered the corresponding
point.

Even if the robot observes the same object surface
several times, the corresponding point may not al-
ways be observed for each object point on the sur-
face. This happens when different object points are
observed on the same object surface as shown in Fig.
4. In that case, if the corresponding point is not found
but two object points are found on the both sides in
the neighborhood of the observed point, such as x1

and x2 in Fig. 4, we estimate the position of the cor-
responding point as follows.

First, assuming that the object surface is sufficiently
smooth, we consider that the surface is approximated
by the line connecting x1 and x2. We then consider
that the corresponding point exists at the position
where the Mahalanobis distance to the new observed
point is minimum (see Fig. 4). The mean position
x and its covariance matrix Λ of the corresponding
point is calculated by the linear interpolation:

x = (1 − ω)x1 + ωx2, (7)

Λ = (1 − ω)2Λ1 + ω2Λ2, (8)

where ω indicates the ratio of interpolation.

object point 
in the map

positional
uncertainty

new object point

estimated position
of the corresponding pointx1

x2

2Λ

1Λ

Fig. 4. Estimation of corresponding point

If the object point is found only on either side of the
observed point in the neighborhood, or if any point
is not found which satisfies eq. (6), we consider that
the observed point belongs to an unobserved part of
a known object or to an unknown object, and simply
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add the point to the map.

In order to exclude the object points caused by false
correspondence in stereo, the object points which have
not been integrated for a certain consecutive observa-
tions are deleted from the map.

2.4.2 Integration of Positional Information of
Observed Points

The observed object points for which the correspond-
ing points are found are integrated into the map by
the maximum likelihood estimate [11]. The new mean
position and the covariance matrix are given by:

x =
Λ−1
o xo + Λ−1

m xm

Λ−1
o + Λ−1

m
(9)

Λ−1 = Λ−1
o + Λ−1

m (10)

where subscripts o and m represent the new observa-
tion and the map, respectively.

2.5 Estimation of Robot Position

To integrate observation results at different viewpoints,
we need to estimate the motion between the view-
points. Since the positional uncertainty accumulates
if the robot position is estimated only by dead reck-
oning, we employ the following vision-based local-
ization method.

We use a three-wheeled electric scooter as a mobile
robot as shown in Fig. 6. We have previously devel-
oped an uncertainty model of robot motion caused
by the errors of the odometer and the steering an-
gle [7]. Using this model, we predict the uncertainty
region for the current robot position. The motion er-
ror monotonically increases as the robot moves, and
the actual error depends on the moving distance. In
our experiments, the error accumulated by the move-
ment between viewpoints (i.e., the movement cov-
ered during the processing of one image) does not
exceed 20 [cm] × 20 [cm]. On the other hand, the
maximum error of our localization method described
below is empirically estimated to be around 8 [cm].
From these data, we decided to divide the uncertainty
region into 3 × 3 subregions and consider the center

of each subregion as a candidate for the robot posi-
tion.

As described in Sec 2.2, at each observation, the set
of object points which are nearest to the robot in ev-
ery direction are obtained. From the distances of such
object points, we can obtain a profile of distances,
called a range profile, which describes the distance
to the object in each direction. Fig. 5 shows an ex-
ample of range profile computed from the disparity
data shown in Fig. 1(b). On the other hand, if the
robot orientation is given in each candidate position,
another range profile is also computed from the map.
By comparing these two range profiles, we determine
the robot position and orientation which maximizes
the similarity of the two range profiles.
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Fig. 5. The range profile computed from the range image shown in Fig.

1(b). Since the robot detects object points whose distances from the robot

are within 6[m], if any points are not found within the range in a direc-

tion, the distance in the direction is set to 6[m].

The similarity of range profiles is evaluated by:

S(i, φ) =
θmax∑
θ=θmin

∣∣∣Do(θ) −Di
m(θ − φ)

∣∣∣ , (11)

where i is a candidate position and φ is the orienta-
tion of the robot; D(θ) is the distance to an object in
direction θ; subscripts o and m represent the obse-
vation and the map, respectively; [θmin, θmax] is the
range of possible viewing direction. This expression
calculates the sum of absolute difference between
profiles; thus, smaller S(i, φ) indicates higher sim-
ilarity.
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Using this equation, for each candidate position, the
best viewing direction φ∗(i) is determined by:

φ∗(i) = arg min
φ
S(i, φ). (12)

Then, the best position i∗ is determined by:

i∗ = arg min
i
S(i, φ∗(i)). (13)

After i∗ is determined, the positional uncertainty Λl
of the robot is updated so that the corresponding un-
certainty region circumscribe the selected candidate
region. Concerning the orientation uncertainty, we
are currently set the uncertainty of orientation to zero
after each localization.

The merit of this localization method based on the
comparison of range profiles is that the computational
cost is low since explicit point correspondence is not
necessary.

2.6 Experimental Result of Human-Guided Move-
ment

The user guides the robot using the keyboard as shown
in Fig. 6. During this movement, the robot repeat-
edly observes the surrounding environment without
stopping. The robot swings the camera head horizon-
tally to observe a wide area. Fig. 7 shows an exam-
ple of the environment and the generated map. In the
map, each object point is represented by the uncer-
tainty ellipse, which is the so-called 3σ ellipse cal-
culated from the covariance matrix. The black line is
the robot movement estimated by the visual localiza-
tion method.

Fig. 6. A snapshot of human-guided movement

Obstacle

Desk

Desk

Shelf

Desk

White Board

Shelf

(b) Map

Desk

Start

(a) Environment

5

10

distance from start [m]

Destination

Fig. 7. A map generation result after a guided movement.

3 Autonomous Navigation with Observation
Planning

3.1 Generation of Shortest Path

Fig. 8 illustrates the generation of the shortest path.
For path generation, we first make a grid-based map.
We regard the grids which include parts of uncer-
tainty ellipses as occupied. The set of occupied grids
constitutes object regions. To consider the robot width
and the motion uncertainty, we then enlarge the ob-
ject regions by w/2 + a, where w is the robot width
and a is the motion error of the robot estimated em-
pirically (currently, 20[cm]). Finally, we compute the
shortest path outside the enlarged regions. The path
consists of straight line segments and circular seg-
ments; the radius of the circular segments is set to
the minimum turning radius of the robot.
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enlarged region

goal

start
object region

Fig. 8. Shortest path

3.2 Observation Planning

Our robot moves at a constant speed; it also makes
observations at an almost constant time interval. View-
points (i.e., robot positions where the image is in-
put) are thus determined from the speed, the interval,
and the generated path. We here describe a method to
determine an appropriate viewing direction for each
viewpoint. The method could be used in combination
with our method of selecting optimal viewpoints on-
line [7].

3.2.1 Determining a set of observable object
points

To select the best viewing direction, we first deter-
mine a set of observable object points (i.e., feature
points on object boundaries) for each viewpoint. Since
the robot was once guided by the user from the start
point to the destination, it knows at which viewpoint
each object point was observed. This knowledge is
used to determine the observability of object points.

In general, the path in the autonomous movement
phase is different from the guided one. We there-
fore make the following two assumptions. We first
assume that an object point is observable on the line
connecting the object point and the viewpoint where
the object point was observed before. We further as-
sume that if an object point is observed at two con-
secutive viewpoints, the object point is observable at
any point between the two viewpoints. Under these
assumptions, for each object point, an observable area
is determined where the object point is observable as
shown in Fig. 9. We calculate the corresponding ob-

servable area for every object points in the map and
determine the set of observable points for each view-
point.

guided path

past viewpoints

object point

observable area

planned path

Fig. 9. Observable area of an object point. The object point is expected

to be observable from the viewpoints between two white circles on the

planned path.

3.2.2 Determining viewing direction

The set of observable object points is calculated for
each viewpoint, as described above. Since a part of
the points are actually observed for a specific view-
ing direction due to the limited field of view, we ex-
amine which part of the points is most effective for
robot localization.

As described in Sec. 3.1, the shortest path consists
of straight line segments and circular segments; a
circular segment is determined by its nearby object
points. Since the relative distance from the robot to
such points is important when entering a circular seg-
ments, the robot directs the camera head to the ob-
ject point which is nearest to the circular path (called
nearest point) among such nearby points, whenever
it is possible. Fig. 10 shows the regions where near-
est points are observable; if the viewpoint is in one
of the regions, the robot always observes the corre-
sponding nearest point.

If such a nearest point is not observable from the cur-
rent viewpoint, the robot selects the viewing direc-
tion so that the positinal error of the robot is mini-
mized after observation.

Let us consider the case where the robot observes
object point at xm and its uncertainty in the map is
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Fig. 10. Selection of viewing direction
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Fig. 11. Estimating the uncertainy in localization

Λm (see Fig. 11). The object point will be observed
within the uncertainty ellipse Λm + Λe(ψ) centered
at xm, where ψ is the viewing direction and Λe(ψ) is
the observation error determined by the relative posi-
tion between the point and the robot (note that these
uncertainties are all supposed to be represented in the
world coordinates for simplicity). Therefore, by ob-
serving the point, the robot position is constrained by
the uncertainty ellipse represented by:

Λl(ψ) = Λm + Λe(ψ) (14)

For each observable object point, the above constraint
on the robot position can be calculated. Therefore, as
in the case of eq. (10), the uncertainty U(ψ) to be

obtained by viewing direction ψ can be estimated by
integrating information of each object point based on
the Maximum likelihood estimate:

U(ψ)−1 =
∑

i∈V R(ψ)

Λil(ψ)−1, (15)

where Λil(ψ) is the constraint by object point i; V R(ψ)
is the set of observable points when observing direc-
tion ψ.

We search for the best direction ψ∗ which minimizes
the uncertainty of the robot position:

ψ∗ = arg min
ψ

|U(ψ)| (16)

3.3 Experimental Result of Autonomous Navi-
gation

We performed experiments on autonomous naviga-
tion using a real robot. During the autonomous move-
ment, the robot estimates the position using the vi-
sual localization method described in Sec. 2.5 and
adjust its moving direction so that the it follows the
generated shortest path.

An experimental result is shown in Fig. 12. The start
point and the destination are the same as those shown
in Fig. 7. In Fig. 12, a light line indicates the short-
est path and dots around the path represent the esti-
mated viewpoint. The arrow on each dot represents
the viewing direction which the robot observed in
this experiment. At viewpoints 1–3, the robot ob-
served the nearest point of the object on the left side
of the path. At viewpoints 4 and after, since the robot
was not able to observe nearest points, it observes
the best viewing direction which are selected to min-
imize the uncertainty in robot localization. Fig. 13
shows snapshots of the robot autonomously moving.

In order to show the effectiveness of our viewing
direction selection based on the minimum localiza-
tion error criterion, we compare our method with the
method which always directs the camera head for-
ward. The results are summarized in Tables 1 and 2.

Table 1 shows the predicted positional uncertainty
|U(φ)| of the robot. Smaller values indicate higher
accuracy. The values in the parentheses in the left
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Fig. 12. The result of a navigation based on an observation plan

Fig. 13. snapshots of autonomous navigation

column indicate selected view directions. Our method
(indicated as planned) always provides better local-
ization.

Table 2 shows the result of robot localization using
the method in Sec. 2.5. The table describes the sim-
ilarity value S(i∗, φ∗(i∗)) of the selected candidate
(indicated as S∗), the mean similarity value S̄ for all
candidates, and the value α calculated by the follow-
ing expression:

α =
(
S̄ − S(i∗, φ∗(i∗))

)
/σ, (17)

where σ is the standard deviation of the similarity

value. α indicates the distinctiveness of the best posi-
tion estimate among all estimates. In our localization
method (see Sec. 2.5), the larger the difference be-
tween the range profiles at the selected position can-
didate and at the others is, the smaller the error in lo-
calization is expected to be. So another way of select-
ing the viewing direction is to search for the direc-
tion which maximizes the difference. It is, however,
costly to calculate the difference for every possible
cases; so we use the method described in Sec. 3.2.2
as an alternative. Table 2 shows that the viewing di-
rections selected by our method always increase α
and, therefore, that the viewing direction selection
using the equation (16) is effective for more accu-
rate estimation of the robot position. Note that the se-
lected viewing direction does not necessarily maxi-
mize α; however the method seems practical because
it can improve the localization accuracy with a rela-
tively small amount of computation.

4 Conclusion

We have proposed a novel visual navigation method
based on human-guided experiences. In the human-
guided phase, the robot observes the environment with
a stereo vision and generates a map. In the autonomous
movement phase, the robot utilizes the map and the
past experience on observation in order to select view-
ing directions which are effective for safe and effi-
cient navigation. To realize this navigation strategy,
we developed a map generation method considering
uncertainties, a fast visual localization method, and a
method of selecting appropriate viewing directions.
In our strategy, all the user has to do is to just guide
the robot from the start point to the destination.

A future work is to combine the proposed method
with the method for selecting viewpoints [7] to si-
multaneously determine both the viewpoint and the
viewing direction for more efficient navigation. An-
other future work is to cope with the case where the
environment changes between the map generation and
the autonomous navigation phase.
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Table 1
The comparison of predicted uncertainty of the robot position with and without observation planning.

viewpoint planned forward

viewing direction viewing direction

4 5.21 (-5.47) 9.24

5 4.23 (-1.04) 4.77

6 1.64 (2.04) 1.98

7 1.75 (2.44) 2.20

8 0.665 (-8.49) 1.14

9 1.13 (-7.08) 2.60

10 2.87 (-1.89) 3.41

11 1.40 (0.66) 1.91

12 1.61 (-9.76) 2.18

Table 2
The comparison of estimation result on localization with and without observation planning.

planned forward

viewing direction viewing direction

viewpoint S∗ S̄ α S∗ S̄ α

4 231.11 248.52 0.324 238.55 244.54 0.113

5 264.07 271.65 0.612 256.18 261.01 0.314

6 242.53 248.21 0.572 206.85 211.80 0.406

7 248.17 256.95 0.447 133.31 137.39 0.315

8 184.77 192.63 0.271 227.98 233.27 0.264

9 199.66 211.94 0.365 194.14 206.43 0.253

10 164.11 179.13 0.744 156.35 163.53 0.314

11 186.26 194.61 0.276 201.45 214.51 0.199

12 207.10 223.54 0.321 190.03 200.90 0.251
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