
J. of Robotics and Mechatronics, Vol. 14, 2002 (to appear)

Recognizing Moving Obstacles for Robot Navigation
using Real-time Omnidirectional Stereo Vision

Hiroshi Koyasu, Jun Miura, and Yoshiaki Shirai
Dept. of Computer-Controlled Mechanical Systems, Osaka University

We describe a method to recognize moving obstacles in a wide view and in real-time. Such an ability is required when a mobile
robot moves in a dynamic environment. Our method uses an omnidirectional stereo vision which is composed of a pair of
vertically-aligned omnidirectional cameras and a PC cluster to obtain panoramic range information of 360 degrees in real-time.
From this range information, the robot on-line generates a free space map of the surrounding environment, and extracts objects
in the free space as candidates for moving obstacles. The robot makes temporal correspondence of the candidates and estimates
their position and velocity using the Kalman filter. To reduce the effect of odometry error to map generation, the ego-motion
is estimated by comparing the current and previous range data. We demonstrate the effectiveness of our method by on-line
experiments.

1 Introduction

Detection of obstacles and free spaces is an essential function
of the sensing system for mobile robots. Even if a robot is
given a map of the environment, this function is indispensable
to cope with unknown obstacles or error of the map. Especially
in dynamic environment, robot must recognize the position and
the velocity of moving obstacles to avoid collision.

Many works (e.g., [10]) use laser range finders to detect ob-
stacles. Laser range finders which scan a 2D plane have a draw-
back that object at a specific height can only be detected. Stereo
vision is also used widely (e.g., [4]). Conventional stereo sys-
tems, however, suffer from a narrow field of view because they
usually use a pair of ordinary cameras.

In the case of mobile robots, it is sometimes necessary to ob-
tain panoramic range information of 360 degrees because ob-
stacles may approach from various directions. There are two
methods to obtain panoramic images. One is to capture a se-
quence of images with rotating a camera and then to integrate
the images into one panoramic image (e.g., [5, 12]). Although
this method could obtain a high-resolution image, it takes a
long time to get an image and is not suitable for robot in dy-
namic environments. The other method is to use a special lens
or mirror to obtain an omnidirectional image at once. Although
the image resolution is low, its real-time nature is suitable for
mobile robot applications.

Prassler et al. [10] proposed a method of tracking moving
objects using a laser range finder. The method detects moving
obstacles by calculating the difference between the current and
the previous obstacle positions on a grid map. The method does
not consider the uncertainty in range data. Moreover, since they
estimate the robot position only by dead reckoning, the accu-
mulated positional error of the robot may degrade the obstacle
map, thereby, detecting static obstacles as moving ones. The
method by Lindström et al. [8] may have a similar problem. Lu
et al. [9] proposed an ego-motion estimation using a laser range
finder to compensate for the error of dead reckoning; however,
their ego-motion estimation does not seem to be applicable to
the case when the uncertainty of range data is relatively large.

This paper describes a method to recognize moving obsta-
cles in a wide view and in real-time using a real-time omni-
directional stereo system. The system uses a pair of omnidi-
rectional cameras aligned to a vertical line. The input images

are converted to panoramic images, in which epipolar lines be-
come vertical and in parallel. Therefore we can apply efficient
stereo matching algorithm for conventional stereo images. The
stereo matching is performed by a PC cluster system to realize
a real-time range calculation for a relatively large image size.
Panoramic range information is obtained from this stereo im-
age. For obstacle detection, a map of static obstacles is first
generated from the range information. Then candidates for
moving obstacles are extracted by comparing the current ob-
servation with the map. The temporal correspondence between
the candidates are examined based on their estimated position
and velocity which are calculated using a Kalman filter-based
tracking. The 2D range information is also used for an on-line
ego-motion estimation to reduce the effect of odometry error
on map generation.

The rest of the paper is organized as follows. Section 2 de-
scribes the real-time omnidirectional stereo system. Section
3 describes obtaining a 2D range information method and the
ego-motion estimation. Section 4 describes a method of gener-
ating the free space map. Section 5 describes a method of de-
tection and tracking of dynamic obstacles. Section 6 describes
experimental results. Section 7 concludes the paper.

2 Real-time Omnidirectional Stereo

2.1 Configuration of Omnidirectional Camera
Pair

We use multiple HyperOmni Visions (HOVIs) [11] for omni-
directional stereo. A HOVI uses a hyperboloidal projection,
which has an advantage that the input image can easily be con-
verted to an arbitrary image with a single effective viewpoint at
the focal point of the hyperboloidal mirror.

In the conventional stereo configuration where two normal
cameras are aligned in parallel, all epipolar lines are horizontal;
this leads to an efficient stereo matching algorithm [2]. Since
we are interested in obtaining dense range images, it is desir-
able that epipolar lines are in parallel so that such an efficient
algorithm can be applied.

To satisfy the condition on epipolar lines, we align two HO-
VIs vertically; this configuration is the same as the one pro-
posed by Gluckman et al. [3]. Each omnidirectional image is
converted to a panoramic image on a cylindrical image plane

1

三浦 純
Vol. 14, No. 2,
pp. 147-156, 2002.

Fig. 1: Omnidirectional stereo setup and an example input im-
age.

x

y

X

Z

OM

OC

c

p(x, y)

P(X, Y, Z)

Y
O

c

hyperboloidal mirror
X2 Y2 Z2

a2 b2 = -1
+

focal point

focal point (camera center)

image plane

Fig. 2: Geometry of hyperboloidal projection[11].

whose axis is aligned to those of the HOVIs. By this conver-
sion, all epipolar lines become vertical in the panoramic im-
ages. Fig. 1 shows a pair of vertically-aligned omnidirectional
cameras. In the current setup, since each omnidirectional cam-
era is supported by a cantilever attached to a vertical bar, there
is a blind spot in the omnidirectional images.

2.2 Image Conversion

From the geometry of HOVI shown in Fig. 2, we obtain the fol-
lowing relationship between scene position (X, Y, Z) and image
position (x, y):

x =
X f (b2 − c2)

(b2 + c2) · (Z − c) − 2bc
√

(Z − c)2 + X2 + Y2
,

y =
Y f (b2 − c2)

(b2 + c2) · (Z − c) − 2bc
√

(Z − c)2 + X2 + Y2
,

wherea andb are the parameters of the mirror shape;c is the
half of the distance between the focal points of the mirror and
the camera;f is the focal length of the camera.

To generate a panoramic image, wefirst set a virtual cylin-
drical image plane around the vertical axis. For the cylindrical
image plane, we currently use the following parameters: 10 de-
grees and 30 degrees for the viewing angles above and below
the focal point of the mirror, respectively; 720 and 100 for the
horizontal and the vertical resolution. From these parameters,

image inputimage input

panoramic
conversion

panoramic
conversion

. . .stereo
matching

stereo
matching

stereo
matching

stereo
matching

result output

PC0 PC1 PC2 -- PC5

image distribution

result collection

Fig. 5: PC cluster implementation.

we can determine (X, Y,Z) for each pixel, thereby, calculating
the corresponding image position. Fig. 3 shows the panoramic
image converted from the omnidirectional input image shown
in Fig. 1.

2.3 Stereo Matching Algorithm

A SAD-based matching algorithm is used. For each pixel in
the right image, the corresponding point is searched for on
the epipolar line within a predetermined disparity range. As
a matching criterion, we use SAD (sum of absolute difference)
of the intensity value in a window around the points. If the SAD
value is small enough, two points are considered to match. We
also adopt the above-mentioned efficiency matching algorithm
and a consistency checking [4] to increase the efficiency and
the reliability. Fig. 4 shows a result of matching, in which
larger disparities (nearer points) are drawn in brighter color.
This stereo system can measure up to about 40 meter.

2.4 Implementation on PC Cluster

The steps to obtain omnidirectional range data are: (1) captur-
ing a pair of omnidirectional images, (2) converting the images
into panoramic images, and (3)finding matched points between
the images. To realize a (near) real-time range data acquisi-
tion, we parallelize the third step using a 6-PC (Pentium III,
600MHz) cluster system as shown in Fig. 5. The size of the
panoramic image is 720x100 and the disparity range to search
is 80. The current throughput is about 0.2[s] per frame. Since
the current algorithm is not fully optimized (for example, we
have not used the MMX instructions), we are expecting to im-
prove the performance in a near future.

2.5 Implementation on a Single PC

The PC cluster-based system may not be suitable for mobile
robot applications due to its size. We are, therefore, investi-
gating another system which uses an image merger to capture
a pair of omnidirectional images by one frame grabber and a
single PC (Pentium III, 850MHz); the current implementation
generates the disparity image of 360x50 in size and 40 in dis-
parity range. The current throughput is about 0.18[s] per frame
without MMX acceleration. One potential problem in applying

2

0 −5050100150200250[deg.]

Fig. 3: Panoramic image obtained from the input image shown in Fig. 1.

0 −5050100150200250[deg.]

Fig. 4: Panoramic disparity image obtained from the images in Fig. 3. Brighter pixels are nearer.

0

2

4

6

8

10

12

14

-50050100150200250300

D
is

ta
nc

e
[m

]

Direction [degree]

Fig. 6: Example range profile.

this system to dynamic obstacle detection and tracking is its
low image resolution, i.e., low spatial and disparity resolution
in range data may make it difficult to detect obstacles. We are
now experimentally examining the problem.

3 Obtaining Range Profile and Ego-
Motion Estimation

3.1 Obtaining 2D Range Profile

To make a map of static obstacles and to adopt a visual ego-
motion estimation method, we first extract the nearest obstacle
in each direction. Since the horizontal axis of the panoramic
image indicates the horizontal direction, we examine each col-
umn of the panoramic disparity image and extract the con-
nected interval in which the disparity difference between (ver-
tically) adjacent pixels is less than or equal to one and which
is nearest among such intervals in the same column. By apply-

ing this operation to every column, we obtain a set of distance
of 360 degrees. From this data set a 2D contour (called range
profile) of the current free space centered at the robot position
is obtained.

Fig. 6 shows the range profile obtained from the disparity
data shown in Fig. 4. In Fig. 6, the horizontal axis represents
the viewing direction from the robot and the vertical axis repre-
sents distance to obstacles. Actually, the direction ranges from
−60.747◦ to 287.974◦; we cannot obtain the range data for the
directions corresponding to the blind spot caused by the pillar
supporting the stereo camera pair. The resolution of the direc-
tion is about 0.5 degrees. Note that if no range data is obtained
for a direction, the distance for the direction is set to zero.

3.2 Ego-Motion Estimation

The positional uncertainty accumulates when the robot posi-
tion is estimated only by dead reckoning. Therefore we have
to estimate the ego-motion of the robot between the viewpoints
to integrate observation results at different viewpoints. Thus,
we adopt the following vision-based ego-motion estimation
method to reduce the uncertainty. This ego-motion estimation
method is similar to [7], which is based on the comparison be-
tween the current and the previous range profile. In the method,
we first compute the uncertainty of the current robot position to
determine a set of possible robot positions. Next, we calculate
the difference between the view of the current and the previ-
ous range profiles for each candidate pair of the position and
the orientation. We use range profiles of previous k times for
comparison to reduce the effects of moving obstacles and stereo
matching errors (currently, k is 3). Finally, the pair of position
and orientation which minimize the difference is selected as the
current position and orientation.

3

Fig. 7: Our mobile robot.

W

rt

lt

x

y

xt yt)(,

xt+1,()

θ

dθ

t

t
dθt=θt+1 θt-

dθt

center of circular trajectory
of the rear wheels

yt+1
L

Fig. 8: Motion model of four wheeled mobile robot.

3.2.1 Uncertainty Model of Robot Motion

Fig. 7 shows our mobile robot which is based on a four-
wheeled electric wheel chair driven by two rear wheels. The
state of robot, X = (x, y, θ)T , consists of the 2D robot position
(x, y) which corresponds to the position of the camera pair, and
the orientation of the robot, θ. Fig. 8 shows the motion model
of the robot controlled by input U = (l, r)T which is the moving
distance of the left and the right wheels. The state transition of
the robot is expressed by the following nonlinear equation:

Xt+1=


xt+

W
2

lt+rt
lt−rt

(
cos θt−cos(θt− lt−rt

W)
)
+L

(
sin θt−sin(θt− lt−rt

W)
)

yt+
W
2

lt+rt
lt−rt

(
sin θt−sin(θt− lt−rt

W)
)
−L

(
cos θt−cos(θt− lt−rt

W)
)

θt − lt−rt
W


= F(Xt,Ut), (1)

where W is the distance between the two rear wheels; L is the
distance between the robot position and the midpoint of the rear
wheels.

Linearizing Eq. (1) by the first-order Taylor series expansion
around the mean value, X̂t and Ût, the covariance matrix of the

predicted state error, ΣXt+1 , can be obtained by:

ΣXt+1 = E[(Xt+1 − X̂t+1)(Xt+1 − X̂t+1)T]

=
∂F(Xt,Ut)
∂Ut

ΣXt

∂F(Xt,Ut)
∂Ut

T

+
∂F(Xt,Ut)
∂Ut

ΣUt

∂F(Xt,Ut)
∂Ut

T

,

(2)

where ΣUt is the covariance matrix of the input U t. We assume
that the error ΣUt is caused only by the slippage of wheels. We
also assume that the error of the left and the right wheels, σ lt

2

and σrt
2, are Gaussian and independent of each other. Thus,

ΣUt is expressed by the following diagonal matrix:

ΣUt =

(
σlt

2 0
0 σrt

2

)
. (3)

σlt
2 and σrt

2 are considered to be proportional to the moving
distance, lt and rt; we determine the proportional coefficients
experimentally (currently, we use 0.3).

In this paper, we define the uncertainty region as the so-
called 3σ ellipsoid obtained from ΣXt . The positional uncer-
tainty is represented as an ellipse generated by projecting the
ellipsoid on the X−Y plain. The orientational uncertainty is
calculated as the marginal distribution of θ.

3.2.2 Comparing Range Profiles for Ego-Motion Estima-
tion

Since we use a 2D grid map as described in Sec. 4, we do not
need to consider the positional errors less than the grid size of
the map. Therefore, candidates for the current robot position
are grid points of the map inside the predicted uncertainty re-
gion. Candidates for the robot orientation are generated by dis-
cretizing the orientational uncertainty region with the angular
resolution.

For each pair of candidate position and an orientation, we can
compute the views of a previous range profile. By comparing
such view of the previous three range profiles with the current
range profile, we determine the current position and orientation
which minimizes the difference between these range profiles.

The difference of range profiles is evaluated by:

Diff (i, φ) =
k∑

j=1

1
N(i, φ, j)

θmax∑
θ=θmin

d(i, φ, j, θ), (4)

d(i, φ, j, θ) =


∣∣∣∣Dt(θ) − Di

t− j(θ − φ)
∣∣∣∣ (Dt and Di

t− j are obtained)

0 (otherwise)
,

where i and φ represent the candidate position and orientation
of the robot, respectively; D(θ) t represents the disparity in di-
rection θ at time t;

[
θmin, θmax

]
represent the range of possible

viewing directions (corresponding to the right and the left side
of panoramic image); N(i, φ, j) indicates the number of data for
which the difference of disparity is obtained. This equation cal-
culates the sum of the average of absolute difference between
range profiles. Notice thatwe do not compare distances but
compare disparities in calculating the difference because the
error of disparity is constant while that of distance increases
as the distance increases. In dynamic environments, data cor-
responding to moving obstacles may degrade the ego-motion

4

path of robot

path of moving
obstacle

static obstacles

A

B

(a)Environment for the experiment.

(b) with only dead reckoning. (c) with the ego-motion
estimation.

Fig. 9: Effect of visual ego-motion estimation.

estimation. Currently, however, we use all range data in ego-
motion estimation by assuming that moving obstacles are small
enough in the panoramic image to be neglected in ego-motion
estimation.

Using this equation, for each candidate position, the best ori-
entation φ∗(i) is determined by:

φ∗(i) = arg min
φ

Diff (i, φ). (5)

Then, the best position i∗ is determined by:

i∗ = arg min
i

Diff (i, φ∗(i)). (6)

After i∗ is determined, the positional uncertainty ΣXt is up-
dated so that the corresponding uncertainty region circumscribe
the selected grid. The orientation uncertainty set to the constant
value (currently used 3σ = 1.5[deg.] which is determined ex-
perimentally.

3.2.3 Experiment of The Ego-motion Estimation

Fig. 9(a) shows the environment for an experiment of the ego-
motion estimation. Fig. 9(b) and (c) show the superimposed
position of obstacle regions obtained by 30 consecutive ob-
servations. In Fig. 9(b), the robot position is estimated only
by dead reckoning, while in Fig. 9(c), the above visual ego-
motion estimation method is used. In Fig. 9(c), walls A and
B are clearly seen and the orientations of these walls are cor-
rect, although there is a moving obstacle which is seen in the
figure. These results show the effectiveness of the ego-motion
estimation method even in dynamic environments.

0.6

0.8

1.2

1.4

1.6

1.8

10 20 30 40 50 60 70 80 90

vertical position y

∆r
 /

∆y

Fig. 10: Effect of image blur.

4 Making a Free Space Map Consider-
ing Vision Uncertainty

4.1 Vision Uncertainty

We consider two factors in estimating the uncertainty of range
data. One is the quantization error in panoramic images. Let d
be the disparity of a matched point and R

(
=
√

X2 + Y2
)

be the
distance to the point in the scene. We obtain R = Bf ′/d, where
B is the baseline (the distance between the focal points of two
mirrors, currently 30[cm]) and f ′ is the focal length of the vir-
tual camera used for generating panoramic images. Consider-
ing the ±1 pixel uncertainty in d, we can calculate the maxi-
mum and the minimum possible distance Rmax and Rmin by:

Rmax =
B f ′

d − 1
, Rmin =

Bf ′

d + 1
. (7)

The other factor is the blurring effect of the panoramic con-
version; that is, a blurred panoramic image is obtained if the
resolution of the panoramic image is higher than that of the
original one. This blurring effect varies depending on the verti-
cal position in the panoramic image.

The following equation represents the relationship between
r, the distance from the image center in the radial direction in
the original omnidirectional image, and y, the vertical position
in the panoramic image:

r =
f (b2 − c2)

(b2 + c2)(U − Ly/h) − 2bc
√

1 + (U − Ly/h)2
,

U = tan θu, L = tan θu + tan θl,

where θu and θl are the viewing angle above and below the fo-
cal point of the mirror; h is the height of the panoramic im-
age. From this equation, we can calculate how many pixels in
the original omnidirectional image corresponds to one pixel in
the panoramic image at a specific vertical position, denoted as
∆r/∆y. Fig. 10 shows the calculation result of ∆r/∆y at all ver-
tical positions; the lower part (larger y) of the panoramic image
is degraded because that part corresponds to the central part of
the original omnidirectional image, where the resolution is low
compared with the peripheral areas. For the positions where
∆r/∆y is less than one, the uncertainty in disparity should be
considered larger than ±1. In that case, the possible range of

5

R(d) Rmax(d)Rmin(d)

θ

safe region

obstacle region

0

robot

Fig. 11: Safe region and obstacle region.

the distance (see Eq. (7)) is increased accordingly. In the cur-
rent configuration, for example, the range error at 1[m] is about
5[cm] and at 5[m] is about 1.2[m].

Using the above uncertainties, we interpret each point of dis-
parity d in the range profile as follows. In Fig. 11, the angle
θ indicates the angular resolution of the panoramic image (cur-
rently, 0.5 degrees); R(d), Rmax(d), and Rmin(d) are the distance
of the point from the robot and their maximum and minimum
values mentioned above. We use the dark gray trapezoid in the
figure to approximate the region where an obstacle may exist.
We call this region an obstacle region. The area in front of the
obstacle region approximated by the light gray triangle, called
a safe region, is the region where an obstacle never exists as
long as the stereo matching is correct. Safe regions are used
for making a map of static obstacles, while obstacle regions are
used for detecting moving obstacles (see Sec. 5.1).

Fig. 12: An example map. White region indicates the free
space; gray regions indicate the area where the observation
count is less than the threshold.

4.2 Generation of Free Space Map

We use a grid representation for the map. To cope with false
matches in stereo, we accumulate multiple observations to ob-
tain reliable map information. Each grid of the map holds the
counter which indicates how many times the grid has been ob-
served to be safe. At each observation, the counter of each grid
inside the safe regions is incremented. If the counter value of
a grid is higher than a certain threshold, the grid is considered
safe. The set of safe grids constitutes the current free spaces

(called a free space map).
Since the robot makes a map while it moves, we first trans-

form the observed data using the current position (including
orientation) of the robot with respect to some fixed world co-
ordinates, and then integrate the transformed data to the map.
The robot position is calculated by the ego-motion estimation
method described above. To reduce the effect of accumulated
error when the robot moves by a long distance, we use only
twelve latest observations for making the free space map, and
then use five as the threshold for the observation counter men-
tioned above. Fig. 12 shows an example map. The grid size is
currently 5[cm] × 5[cm].

5 Detecting and Tracking Moving Ob-
stacles

5.1 Extracting Moving Obstacle Candidates

Candidates for moving obstacles are detected by comparing the
current observation with the free space map. Considering the
uncertainty in observation, if the obstacle region (see Fig. 11)
of a point in the range profile is completely inside the free
space, the point is considered as a part of a moving obstacle.
Since the points from the same obstacle may split into several
obstacle regions, we merge a set of moving points if their rela-
tive distance is less than a certain threshold (currently, 40[cm]).
We consider a merged group of such points as a candidate for
moving obstacle and use their mass center as its observed posi-
tion.

5.2 Tracking using Kalman Filter

The state xt of a moving obstacle is represented by:

xt = (xt, yt, ẋt, ẏt)T ,

where (xt, yt) and (ẋt, ẏt) are the position and the velocity in the
world coordinates at time t. The robot obtains the following
observation yt for each moving obstacle:

yt =
(
xo

t , y
o
t
)T ,

where (xo
t , y

o
t) is the observed position of the obstacle. Sup-

posing a constant velocity of a moving obstacle, we obtain the
following state transition equation and observation equation:

xt+1 = Ft xt + wt,

yt = Ht xt + vt,

where wt and vt are the error terms. wt represents the acceler-
ation of the obstacle; the maximum allowed acceleration (i.e.,
so-called 3σ value) is set to 1[m/s2]. vt represents the observa-
tion error (see Sec. 4.1). The matrices in the above equations
are given by:

Ft =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 ,

Ht =

(
1 0 0 0
0 1 0 0

)
,

6

where ∆t is the cycle time.
We use the Kalman filter [6] to track moving obstacles. Let-

ting P, Q, and R be the covariance matrix of x, w t, and vt,
respectively, the following Kalman filter is derived:

xt+1/t = Ft xt/t,

xt/t = xt/t−1 + Kt
[
yt − Ht xt/t−1

]
,

Kt = Pt/t−1HT
t

[
HtPt/t−1HT

t + Rt

]−1
,

Pt+1/t = FtPtF
T
t + Qt,

Pt/t = [I − KtHt] Pt/t−1,

x0/−1 = x0,

P0/−1 = P0,

where Kt is the Kalman gain; x0 and P0 are the initial position
and the uncertainty of an obstacle, respectively; P 0 is equal to
the vision uncertainty R0 when the obstacle is first observed.

5.3 Making Correspondence

Using the above motion model, we can predict the position of
a moving obstacle and its uncertainty. In order to check the
correspondence between an obstacle being tracked and a can-
didate for moving obstacle detected in the current observation,
we calculate the following Mahalanobis distance d M between
the predicted and the observed positions:

dM = dT
y

(
HtPt/t−1HT

t

)−1
dy,

dy = yt−Ht xt/t−1.

If dM is less than a given threshold (currently, 9.21), the corre-
spondence is considered correct.

In some cases, however, the correspondence may not be one-
to-one for the following reasons. First, although we merge
neighboring points to form a moving obstacle candidate (see
Sec. 5.1), it is possible that a single object is observed as two
or more separate objects; for example, the left and the right
edge of a person may be observed as two separate objects. In
addition, there are occasional false objects caused by the error
in stereo matching. Therefore we adopt a track-splitting filter
[1] which considers all possible correspondence and generates
a tree of possible tracks. If the corresponding observation is not
obtained for a branch of the tree for a certain number of frames
(currently, three), the branch is deleted.

Since there is still some uncertainty in localization, parts of
static obstacles are sometimes detected as candidates for mov-
ing obstacles. As a result, there may be false moving obstacles
among the remaining branches in the tracking tree. We then use
the estimated velocity to discriminate truly moving obstacles
from false ones. If the estimated velocity of a moving obstacle
being tracked is less than 20[cm/s], that object is considered to
be a part of some static obstacle.

6 Experimental Results

We performed experiments of tracking multiple walking per-
sons by the mobile robot in our laboratory as shown in Fig.
13. The total processing time including omnidirectional stereo,
ego-motion estimation, update of free space map, and dynamic

Fig. 13: Snapshot of an experiment.

obstacle detection and tracking is currently about 0.31[s] per
frame.

Figs. 14 and 15 show the result of an experiment. In the
experiment, one person walked from the front of the robot,
another person walked from the back at same time, and they
passed each other near the robot. The robot detected and
tracked them as it moved on a pre-determined trajectory. Fig.
14 shows a sequence of the tracking result, in which trajec-
tories of the tracked persons (labeled A and B), trajectory of
the robot, moving obstacle candidates, and free space contours
are drawn. Fig. 15(a)-(e) show the projection of the estimated
person positions onto the panoramic image in the case of Fig.
14(a)-(e), respectively. The figures show that the tracking was
correctly performed even when persons were overlapped. In
Fig. 15(d), though the robot lost person A due to the blind spot,
it successfully restarted tracking later as another person A’(see
Fig. 14(e) and Fig. 15(e)). The proposed method is robust in
complex environments, where there are various static obstacles
such as chairs and desks.

7 Conclusion

We have developed a method of on-line detection and tracking
of moving obstacles by a mobile robot using real-time omnidi-
rectional stereo vision system. The method can robustly track
multiple moving obstacles under unknown complex environ-
ments. It can also cope with the odometry error by an on-line
ego-motion estimation method based on the comparison be-
tween range data. The experimental results show the validity
of the method. A future work is to apply the system to mobile
robot navigation. Another future work is to develop a compact
on-robot system for experiments in much wider spaces.

Acknowledgments

The authors would like to thank Prof. Yagi of Osaka University
for his useful advice on omnidirectional cameras. This research
is supported in part by the Kurata Foundation, Tokyo, Japan.

References
[1] I.J. Cox. A Review of Statistical Data Association Techniques

for Motion Correspondnce. Int. J. of Computer Vision, 10(1):53–
66, 1993.

7

[2] O. Faugeras et al. Real-Time Correlation-Based Stereo: Algo-
rithm, Implementation and Application. Technical Report 2013,
INRIA Sophia Antipolis, 1993.

[3] J. Gluckman, S. K. Nayar, and K. J. Thoresz. Real-Time Om-
nidirectional and Panoramic Stereo. In Proc. of Image Under-
standing Workshop, volume 1, pages 299–303, 1998.

[4] S. Kagami, K. Okada, M. Inaba, and H. Inoue. Design and Im-
plementation of Onbody Real-time Depthmap Generation Sys-
tem. In Proc. of IEEE Int. Conf. on Robotics and Automation,
pages 1441–1446, 2000.

[5] S.B. Kang and R. Szeliski. 3-D Scene Data Recovery Using Om-
nidirectional Multibaseline Stereo. Int. J. of Computer Vision,
25(2):167–183, 1997.

[6] T. Katayama. Application of Kalman Filter. Asakura Shoten,
1983 (in Japanese).

[7] K. Kidono, J. Miura, and Y. Shirai. Autonomous Visual Naviga-
tion of a Mobile Robot Using a Human-Guided Experience. In
Proc. of 6th Int. Conf. on Intelligent Autonomous System, pages
620–627, 2000.

[8] M. Lindström and J.-O. Eklundh. Detecting and Tracking Mov-
ing Objects from a Mobile Platform using a Laser Range Scan-
ner. In Proc. of IEEE Int. Conf. on Intelligent Robots and Sys-
tems, pages 1364–1369, 2001.

[9] F. Lu and E.E Milios. Robot Pose Estimation in Unknown En-
vironments by Matching 2D Range Scans. In IEEE Computer
Vision and Pattern Recognition Conf., 1994.

[10] E. Prassler and J. Scholz. Tracking Multiple Moving Objects for
Real-Time Robot Navigation. Autonomous Robots, 8(2):105–
116, 2000.

[11] K. Yamazawa, Y. Yagi, and M. Yachida. Omnidirectional Imag-
ing with Hyperboloidal Projection. In Proc. of 1993 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, pages 1029–1034,
1993.

[12] J.Y. Zheng and S. Tsuji. Panoramic Representation of Scenes for
Route Understanding. In Proc. Int. Conf. on Pattern Recognition,
pages 161–167, 1990.

8

tracking result
moving obstacle candidate

free space contour movement of the robot

A

B

A
B

A

B

A

B

A’

(a) (b) (c) (d) (e)

Fig. 14: A tracking result.

(a)

(b)

(c)

(d)

(e)

Fig. 15: Projection of the estimated person positions onto the panoramic image. A solid-line box represents an estimated person
position when the corresponding observation is available at that frame, while a broken-line box is drawn when the corresponding
observation is not available.

9

