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Abstract— Agriculture has been suffering from many prob-
lems nowadays, and labor shortage is one of the most serious
ones. Automation of agricultural works is a possible solution
and many efforts have been made for developing harvest sup-
port robots. This paper discusses an application of mobile robot
technologies to harvest support in the greenhouse horticulture
domain. Although there are several harvest support robots
for fruits and vegetables, they usually require modification
of a greenhouse for autonomous navigation. We therefore
aim to develop a mobile robot that can operate and support
harvesting works in normal greenhouses, especially for flowers.
Based on an investigation of necessary technologies for harvest
support robots, we develop a prototype mobile robot with
person following and 3D mapping capabilities. We performed
preliminary experiments in a real greenhouse and evaluated
the developed robot system.

I. INTRODUCTION

Agriculture has been suffering from many problems nowa-
days, and labor shortage is one of the most serious ones. The
portion of the elderly in agriculture is significantly increasing
in Japan; as of 2015, the ratio of farmers over 65 years old
reached 63.5% (1.32 million) [1]. Improvement of the quality
of agricultural crops and the reduction of production cost are
also issues to be resolved for making Japanese agriculture be
more competitive in the world market. In addition, as the total
population in the world is expected to reach 9.2 billion in
2050, increasing the productivity of agriculture is a common
problem in the world.

In order to solve these problems, efforts towards the
automation of agricultural works are being carried out under
the initiative of the Government of Japan. One popular
example is the unmanned operation of agricultural machinery
in outdoor such as tractors and rice planters [2]. Such
a machine can move with a positional error within 5cm
using a highly accurate GPS sensor and an inclinometer.
In the greenhouse horticulture domain, automatic harvesting
robots for, for example, strawberries [3] and tomatoes [4]
are being developed; computer vision techniques are used
for recognizing fruits [5]. In many cases, however, in order
to use such automated systems, it is necessary to modify a
greenhouse for robots; for example, they sometimes need to
install rails for guiding a robot. It is still difficult to use them
in the current greenhouse. Therefore, in this research, we aim
to develop a mobile robot that can support harvesting work
in greenhouses, especially those for flowers.
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In this paper, we first discuss necessary technologies for
mobile robots for harvest support. We then describe the
implementation of some of key technologies, that is, person
following and map generation in greenhouse domain. We
also describe experimental results to confirm the feasibility
of the developed system.

The rest of the paper is organized as follows. Sec. II
discusses necessary technologies for harvest support mobile
robots. Sec. III explains the design and the specifications of
a prototype robot. Sec. IV and Sec. V describe the person
following and the mapping function of the robot. Sec. VI
show experimental results in a real greenhouse. Sec. VII
concludes the paper and discusses future work.

II. NECESSARY TECHNOLOGIES FOR HARVEST SUPPORT
MOBILE ROBOTS

Aichi prefecture where our university exists has highest
share of many flowers including roses and chrysanthemums.
We visited several farms cultivating flowers in greenhouses
in order to investigate necessary functions that mobile robots
for flower harvest support need to possess.

One of the key issues in keeping the quality of cut
flowers is to shorten the time between reaping flowers and
putting them into water. For this purpose, we are aiming at
developing a mobile robot which carries a water tank and
automatically follows a worker. The robot also moves back
to a station once an enough amount of flowers are reaped.
Fig. 1 illustrates how the robot works and what its necessary
functions is. In this paper, we focus of two of them. One is
to follow people for carrying items necessary for harvesting.
The other is to make a map and localize the robot in the map
for autonomously carrying harvest to a specific station.

Although these two functions are quite popular in the
mobile robotics domain, realizing them for flower harvest
support requires us to consider a special characteristic of
greenhouse. In a greenhouse, we often see heavily-grown
plants as shown in Fig. 2. Such a situation can arise as plants
grow naturally, but also is artificially made by farmers. Since
photosynthesis processes are very important for the growth
of plants, branches of plants are expanded and/or bent from
crop rows to aisles, and this expansion/bending is different
from farm to farm. As a result, plants often occlude aisles
in various ways and ordinary crop row detection approaches
(e.g, [6], [7], [8]) cannot be applied. This also makes difficult
to detect people as well as perform mapping and localization.



Fig. 1. Tasks and functions of flower harvest support robots.

Concerning people detection and tracking, we need to
develop a method which can cope with heavy occlusions
by and/or contact with plants. Leg and/or body detection
by a 2D LRF (e.g., [9]) or blob detection using 3D point
clustering (e.g., [10])do not work well.

Concerning mapping and localization, since traversable
regions (i.e., aisles) are sometimes not visible (see Fig. 2),
we need to discriminate fake obstacles, which are usually
plants that can be pushed away, from real obstacles to avoid.
Navigation in such a scene is very challenging. We also
consider plants’ flexibility in 3D scan matching for ego-
motion estimation and localization. A long-term change of
plants could also be factors to be considered.

III. PROTOTYPE ROBOT

A prototype robot is shown in Fig. 3. The size of the
robot is 450mm in width, 700mm in depth, and 1350mm
in height. The width and the depth were determined based
on those of a cart actually used for carrying plants in
greenhouse. The height is determined so that the view of the
camera on the top is not obstructed by plants. In addition
to a computer controlled usage, the robot has a power assist
mechanism which makes the manual control easy.

We use an RGB-D camera (Kinect v2 by Microsoft) for
measuring distance to objects. We could use a 3D LIDAR
instead but it is too costly for a usual operation. A 2D
LIDAR is also a possible option but it is not suitable for
plant-covered environments. Although the robot is equipped
with a 3D LIDAR (VLP-16 by Velodyne) and a 2D LIDAR
(UST-20LX by Hokuyo), they are used only for evaluation
purposes. The PC used for control and sensor data processing
is the one with Core i7-6700HQ CPU and NVIDIA GeForce
GTX 960M GPU.

IV. PERSON FOLLOWING

The person following capability is realized by a combina-
tion of an image-based person detection and tracking and a
trajectory generation for following movements.

(a) greenhouse 1.

(b) greenhouse 2.

Fig. 2. Greenhouse scene examples.

Fig. 3. Prototype robot

A. Person detection and tracking

We compared three image-based person detection meth-
ods. The first one is YOLO, which is an deep neural network-
based person detection by Redmon and Farhdi [11]. The



TABLE I
COMPARISON RESULT OF PERSON DETECTION METHOD.

Method YOLO Depth image Viola & Jones
Precision rate 0.938 0.823 0.190
Recall rate 0.875 0.438 0.492

second one is a depth camera-based person detection by
Munaro and Menegatti [12]. The third one is to apply a
usual Haar-like feature-based method [13] to human upper
body images. Using image sequences of person following
in a greenhouse as inputs, we compared these methods in
terms of recall and precision of person detection. Examples
of detection results are shown in Fig. 4 and a performance
comparison is in Table I.

Based on the comparison results, we decided to use YOLO
for a high performance; especially in recall, it exhibits about
1.7 times higher recall rate than the others. We also analyzed
false positive cases by YOLO and found what detected are
person images reflected by glass walls of a greenhouse; such
false positives can easily deleted using depth information.

Person tracking uses the Kalman filter to estimate the
position of a person using the system equation of constant
linear motion based on the coordinate position of the detected
person. The position and velocity of a person are represented
by a robot coordinate system, and coordinates are converted
appropriately by using the amount of movement of the robot
obtained from odometry.

For a more reliable person tracking, we use Kalman filter
for person position estimation. We use a constant velocity
model as a state transition model. The position and the
velocity of a tracked person are represented in a robot
coordinate system, and a wheel odometry is used for a
coordinate transformation due to the robot movement.

B. Motion planning for person following

In a usual person tracking scenario (e.g., [14]), a robot can
make a collision-free path to the detected person position.
Detecting aisles is, however, difficult in a greenhouse, as
mentioned above, because aisles are often occluded by grown
plants. We therefore use the movement of a person as a guide
to a safe path planning; that is, the robot tries to trace the
person’s trajectory. As a person moves by 0.5m or more
from the last position, the robot adds it to the sequence of
person positions, which are then used as sub-goals of the
robot movement. The robot repeatedly moves to the nearest
sub-goal to approximately trace the person trajectory.

The translational and the angular velocity at time t,
denoted as vrt and ωr

t respectively, are determined by:

vrt =

⎧⎨
⎩

vrmax (dpt ≥ dth1)
dp
t−dth2

dth1−dth2
vrmax (dth1 > dpt > dth2)

0 (dth1 ≥ dpt )

, (1)

ωr
t = Kθ (θ

sg
t − θrt ) +Kdd

diff
t , (2)

where dpt is the distance between the target person and the
robot, θsgt is the direction of the line connecting the last and

Fig. 5. Calculation of the translational and the angular velocity.

the current sub-goal, θrt is the robot orientation with respect
to that line, ddifft is the distance to that line (see Fig. 5).

Equation (1) means that the robot moves at the maximum
speed if the distance to the target person is larger than
dth1, stops if the distance is less than dth2, and moves
at an interpolated speed if the distance is in between the
thresholds. The parameters are currently set as follows:
vrmax = 0.5m/s, dth1 = 1.5m, and dth2 = 0.5m.

Equation (2) means that the robot is controlled so that the
robot is aligned to the line connecting the last and the current
sub-goal and comes closer to that line. The gain parameters
are currently set as follows: Kθ = 0.5 and Kd = 0.25.
If the distance to the target person is small enough (less
than 1.5m), however, the robot is controlled to directly move
towards the latest target person position.

V. 3D MAPPING OF INTERIOR OF GREENHOUSE

Mapping and localization (or SLAM) [15] are necessary
for a robot to autonomously move in the environment.
The system uses RTAB-Map [16] for 3D mapping of an
interior of a greenhouse. RTAB-Map extracts feature points
in the color images, calculates their 3D position using
the corresponding depth images, and estimates the camera
motion from a set of corresponding 3D points in consecutive
frames. Since the wheel odometry is not very accurate in the
environments like greenhouses which could cause frequent
slippage, we use this method which does not rely on any
odometry information. Note that the above feature matching
is also used for loop closure detection in RTAB-Map.

In outdoor environments, the appearance of a scene
changes with those of sunlight, and this may degrade image
feature extraction and matching, and a final mapping result.
We therefore conducted a preliminary mapping experiment
in a greenhouse in the TUT campus. Fig. 6(a) shows the
experimental scene. The size of the greenhouse is 7m×10m.
We manually moved Kinect v2 and collected data over seven
minutes of movement. Fig. 6(b) shows the mapping result,
which is reasonably consistent over the entire region. This
result confirms the use of the combination of Kinect v2 and
RTAB-Map.



(a) YOLO [11]. (b) Depth camera-based [12]. (c) Viola& Jones [13].

Fig. 4. Comparison of person detection methods.

(a) Experimental scene.

(b) Mapping result.

Fig. 6. A preliminary mapping experiment in a TUT greenhouse.

Exploration and mapping is one of the approaches to
autonomously generating a map of an unknown environment
(e.g., [17]). However, this may not work well if detection of
traversable regions is difficult in a greenhouse due to heavily-
grown plants. One practical approach is to guide a robot
throughout the greenhouse aisles using the person following
capability. In that case, we need to eliminate depth data of
the person so that those data are not included in the final
map.

VI. EXPERIMENT

We carried out person following and mapping experiments
at a rose cultivating site in Aichi Agricultural Research
Center. Fig. 7 shows a snapshot of the person following ex-
periment in an aisle of the greenhouse. We got 1,800 frames
of data in total and generated a map by using RTAB-Map, as
shown in Fig. 8. We also took another approach to making a

Fig. 7. Experimental scene in a greenhouse.

Fig. 8. Mapping result using RTAB-Map.

map using 3D LIDAR data for a comparison purpose. This
method uses an NDT-based ego-motion estimation [18] for
a 3D LIDAR-based mapping, and Fig. 9 shows the mapping
result. The colors in the map indicate the height of the 3D
points. The areas to which the maps are generated by both
methods are rather different due to different fields of view
of the sensors. For the commonly mapped area, they are
sufficiently consistent with each other. Therefore, an RGB-
D camera is a feasible sensor for mapping a greenhouse with



Fig. 9. Mapping result using 3D LIDAR.

Fig. 10. The person and the robot trajectory during a person following
experiment inside an aisle.

grown plants.
Fig. 10 shows the results of person following in an aisle

where the robot took a set of data used for making the
map in Figs. 8 and 9. The green and the red line indicate
the person and the robot trajectory, respectively, during the
person following (and mapping) experiment. Most of time
the distance between the robot and the person is small
enough, the robot almost always moved toward the current
person position (see Sec. IV-B). The robot successfully
tracked the person.

We then compared the map with the one which is gener-
ated from a set of data taken about two months before. One
of challenging characteristics of such a natural scene is that
plans grow and their shapes change sometimes drastically.
Fig. 11 shows the comparison results. The two independently
generated maps are aligned using NDT with a manually-
given initial alignment. Thanks to large structural objects
such as the walls on the right, two maps are well aligned.
We can observe that the greenhouse structure is considered

(a) top view.

(b) side view.

Fig. 11. Comparison of the maps generated using new (in green) and old
(in red) data.

sufficient to localize the robot even if the date of mapping and
that of localization are largely different. At the same time, we
can see the growth of plants clearly due to a nice alignment.
This would be beneficial to a precise plant matching over
times for watching a growing process for timely harvesting.

VII. CONCLUSIONS AND FUTURE WORK

This paper investigated necessary technologies for mobile
robots that support harvesting in greenhouse horticulture.
Based on the investigation results, we developed a prototype
mobile robot with person following and mapping capabilities.
We compared three person detection methods in an actual
greenhouse scene, and selected the YOLO detector as most
suitable one. We also developed a path planning method that
controls the robot so that it follows the trajectory of the
detected target person, and that can therefore be applied to
aisles with heavily-grown plants. Concerning the mapping,
we evaluated RTAB-Map, a SLAM method which uses an
RGB-D camera and has been shown to be effective in
various environments, also in the same greenhouse scene and
confirmed that it can generate a map which is comparable
to the one generated by a more reliable 3D LIDAR. We also
compared two maps generated with a large interval to show
structural objects are effective for localization under a large



change of growing plants.
For increasing the efficiency of harvesting work, it is

desirable that a robot can autonomously move around in
a greenhouse for carrying harvested plants or other items.
For this purpose, we are now developing a system which
combines the local navigation capability with a global route
planning and realize from-to operations. It is also necessary
to develop a reliable localization and traversable region
detection using RGB-D data for a robust local navigation.
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