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Abstract— This paper describes a system that can find and
lift a specific object in a bin containing piled objects. Such a
task is ubiquitous in our daily life, for example, in finding a
small toy in a toy box or in finding a stationary in a drawer.
To efficiently achieve this task, it is necessary to recognize
the object placements with consideration of occlusions and to
plan a proper hand motions for lifting or searching for the
target object. We developed methods for such two necessary
functions, with introducing a sweep motion for removing many
non-target objects at once. We implemented the methods on a
dual-arm humanoid robot with an RGB-D camera and a suction
mechanism. The experimental results show the effectiveness of
the proposed approach.

Index Terms— Object search under occlusion, Object han-
dling, Object placement recognition, Bin-picking

I. INTRODUCTION

Personal service robot is one of the promising application
areas of robotic technologies. In the “aging society,” the ex-
pectations of robots that can support people in their everyday
situations are increasing. Possible tasks of such robots are:
fetching a user-specified object, putting tableware away, and
cleaning a room. Object search and manipulation is one of
the commonly-used functions for such robotic tasks.

In this paper, we deal with the task of finding a specific
target object in a bin with many objects, where the target
object is sometimes occluded by others. We often face such
a situation in our daily life (see Fig. 1 for example), and our
usual strategy will be something like localizing the object
from its partially-occluded view, picking up a most likely
object, and/or stirring the object pile, for getting the object.
This paper aims to develop a system that can handle such
situations in the task of finding a specific object.

Hand-eye systems have a long history and their functions
can usually be divided into two parts: (1) object recognition
and localization and (2) hand motion planning.

Fig. 1. Typical cases of finding an object with occlusion.

Typical strategies for object recognition and localization
are shape-based [1] and feature-based [2], [3]. They use
object shape and appearance (or texture) models and try
to match them with those in the scene. For texture-scarce
objects, edge-based features have been proposed [4], [5].
Feature-based approaches are basically robust to partial oc-
clusions as long as prominent local features are visible. It is
also possible to localize an object from visible features by,
for example, solving PnP problem [6].

In the case where such strong features are not available
and/or under heavy occlusions, recognition results should
include ambiguities. For cases where occlusions exist, Dogar
et al. [7] developed a method of evaluating occluded regions
behind observable objects and predicting possible existence
of a target object in the regions. Since all objects are sepa-
rated and stand on the table, a simple strategy of removing
the largest object first is sufficient for finding an occluded
target object.

Hand motion planning has also been investigated for a
long time. Typically, it is solved by determining hand pose
for grasping [8] and planning a collision-free hand motion;
solutions are usually straightforward once the object pose is
reliably estimated. Recent works on pick-and-place planning
deal with more realistic problem setting, for example, com-
plex object and environment surface [9], [10] and human-like
hands and re-grasping [11].

In a complex scene as shown in Fig. 1, integration of
recognition and handling is sometimes effective. Gupta and
Sukhatme [12] use pushing actions to spread a pile or a
cluster of objects so that each object can be recognized
and manipulated easier. Recognition is done only when
objects are sufficiently apart from each other. Katz et al. [13]
adopt pushing operations for verifying object segmentation
hypotheses in clearing a pile of unknown objects. Spending
time for recognizing a scene as accurately as possible could
be worse than just handling objects one after another with a
rough interpretation of the scene. Balancing recognition and
action operations is an interesting issue.

This paper deals with a probabilistic interpretation of
object placement in a scene with a heavy occlusion, followed
by an adaptive object handling strategy; depending on the
interpretation, that is, how reliably a target object is found
and localized, an appropriate handling action is selected. The
contribution of the paper is to develop an integrated approach
to object search in a clutter, with introducing a sweep motion
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(a) The set of blocks used.
(b) The container from which a
target object is lifted.

Fig. 2. Bin-picking task.

(a) HIRO. (b) Suction nozzle. (c) Plate for sweep.

Fig. 3. The robot with a suction mechanism.

to remove many non-target objects at once, and to verify the
approach in a real implementation.

The rest of the paper is organized as follows. Section II
describes an overview of the system and the robot and the
tasks we deal with. Section III describes the details of an
object placement estimation method. Section IV describes a
method of planning handling strategies. Section V concludes
the paper and discusses future work.

II. OVERVIEW OF THE SYSTEM

A. Task and robot system

We deal with the task of finding and lifting a target object
from a set of known objects (blocks) in a clutter as shown in
Fig. 2. The shape of the container is known to be a part of
a sphere, and its size and position are measured in advance.

Fig. 3 shows our robot (HIRO of Kawada Robotics) with
a Kinect V2 on the head for image and depth acquisition. A
suction mechanism and a plate are attached to either of the
hands for lifting an object and sweeping objects, respectively.

B. Process flow

The robot takes the following steps for achieving a task:
1) Estimate object placements by extracting surfaces,

enumerating possible correspondence and object model
candidates, and calculate the probability of each scene
object matching with an object model.

2) Lift an object using the suction mechanism by plan-
ning a collision-free hand motion if target object
candidates are found.

3) Verify the lifted object by checking its two different
surfaces.

4) Estimate the size of occluded regions for planning a
sweep motion if target object is not found.

Estimate object placements

Plan and execute 
a sweep motion

Target object 
candidate found?

Start

No

Yes

Target object 
verified?

Lift the candidate

No

Yes

End

Fig. 4. Flow of target object finding process.

Fig. 5. Object models and surface models.

5) Sweep the selected region for hopefully revealing the
target object.

The flow of the object finding process is summarized as
shown in Fig. 4.

III. OBJECT PLACEMENTS ESTIMATION

Object recognition and object localization are necessary
for lifting a target object. Due to frequent occlusions, the
target object may not be visible or may be only partially
visible. Since ignoring partially-visible objects in a very
cluttered scene as shown in Fig. 2(b) is inefficient, we infer
object identities also for such objects.

An object is composed of surfaces. We thus first detect
surfaces in a scene, and then estimate the probability of each
surface being a certain model surface. We then calculate the
probability of an object in the scene being an object model
in the database using object-surface relationships. The details
are explained below.

A. Object and surface models

The database describes the relationships between objects
models and surface models. There are twelve surface models
for seven object models, as shown in Fig. 5. Cylindrical
surfaces (surface #10 and #11) are sometimes detected as
a pair of planes due to a limited accuracy of KinectV2. We
add two virtual surface models (#13 and #14), which are
observed in such a case, and also two virtual object models
composed of those planes.

B. Surface detection and identification

The first step is to detect surfaces using an HSV clustering
and a RANSAC-based multiple surface fitting [14]. The
fitting is performed for both flat and curved surfaces. Fig.
6 shows an example surface detection result.
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Fig. 6. An example result of color-based pixel clustering and surface
detection. From left to right: KinectV2 input, detected only yellow objects,
and surface detection result.

(a) Un-occluded case. (b) Occluded case.

Fig. 7. Occlusion status check. Red lines indicate unobstructed views and
black ones obstructed views.

For identifying a surface, we treat un-occluded and oc-
cluded cases differently. When a surface is judged to be
un-occluded, the generic surface shape models (rectangle,
triangle, circle for planar, and cylindrical for curved in our
case) are fitted to the surface. Whether a surface is occluded
or not is judged by checking the existence of other objects
between the camera position and the region surrounding the
surface boundary. Fig. 7 shows an occluded and an un-
occluded case judged by this check.

1) Surface identification for un-occluded cases: In the
surface model fitting for a detected planar surface, the mini-
mum bounding shape of each generic surface shape model is
calculated. Fig. 8 shows the case where three generic planar
surface models are fitted to a detected rectangular surface. If
the ratio of the area of the detected surface to that of a fitted
model is above a threshold (currently, 0.7), this fitting is
accepted and two model size parameters (e.g., the lengths of
two rectangle edges) are calculated. Possible specific models
in Fig. 5 are then enumerated for which the differences in
size parameters are less than another threshold (currently,
10.0mm).

The probability P (Sm, Sd) that a detected surface Sd

corresponds to a model surface Sm is given by:

P (Sm, Sd) = αM(E1
m, E1

d) ·M(E2
m, E2

d), (1)

M(Em, Ed) =

⎧⎨
⎩

min {Em/Ed, Ed/Em}
(|Em − Ed| < 10mm)

0 (otherwise)
(2)

where E∗ is an edge length and α is a constant for normal-
ization over possible surface models.

2) Surface identification for occluded cases: Identifying
an occluded surface is sometimes hard only from the visible
part. We thus enumerate surface models which are not
inconsistent with the detected ones in terms of the maximum
and the minimum size and give a uniform probability to each
model, that is,

P (Sm, Sd) =
1

N
, (3)

where N is the number of enumerated models.

detected 
surface boundary

bounding 
rectangle

bounding 
triangle

bounding 
circle

Fig. 8. Generic surface model fitting.

Detected 
surface

Candidate model surfaces 
(probability)

Fig. 9. Surface identification results.

3) Example surface identification: Fig. 9 shows examples
of surface identification. Surfaces 0 to 5 are un-occluded
and surface 6 is occluded. Surfaces 0 and 1 are identified
as a single model because their sizes are large enough for
discrimination. Surfaces 2 to 5 are matched with multiple
models because their sizes are not very unique. Surface 6
has many possible models due to occlusion.

C. Object identification from surface identities

Object identity can be determined from those of detected
surfaces. We first cluster neighboring surfaces into objects
if they are close enough (< 10mm) to each other and their
relative angle is small enough (< 90 deg). Fig. 10 shows a
result of clustering for yellow blocks.

For a detected object with one surface Sd, the probability
P (Om, Sd) that it belongs to model object Om is given by:

P (Om, Sd) = β

Ns∑
i

P (Si
m, Sd) · P (Om, Si

m), (4)

where Ns is the number of model surfaces and β a constant
for normalization over possible object models. The first term
is the probability that detected surface Sd corresponds to
model surface Si

m, defined above. The second term is the
probability that model surface Si

m belongs to model object
Om. This is given by dividing the number of that surface
in the model object by the number of that surface over all
model objects. As a result, when surface 2 is detected, for

Fig. 10. An example result of clustering surfaces. From left to right:
KinectV2 input, detected yellow surfaces, object detection result; each
region of a color corresponds to an object.
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Detected 
object

Candidate model objects 
(probability)

Fig. 11. Object identification results.

example, this probability is larger for object 2 than for object
3, since object 2 has two of surface 2 (see Fig. 5).

For a detected object with two surfaces, S1
d and S2

d , the
probability P (Om, S1

d , S
2
d) that it belongs to model object

Om is given by:

P (Om, S1
d , S

2
d) = γ

n∑
i

n∑
j

P (Si
m, S1

d) · P (Sj
m, S2

d)

·P (Om, Si
m, Sj

m), (5)

where γ is a constant for normalization over all combinations
of model surfaces. The first and the second term are the prob-
ability about the surface identity defined above. The third
term is the probability about surface-object relationships,
defined accordingly as in the case of single surface-detected
objects.

Fig. 11 shows examples of object identification. Objects
0 and 1 have one or two candidate models. Objects 2 and
3 have much more candidates because only one surface is
detected.

D. Experimental evaluation

We experimentally compared the proposed object place-
ment estimation method with a method which does not
consider occlusions. We put all objects in the container and
stirred them sufficiently, and then executed the two estima-
tion methods. For each model object, we collected thirty
un-occluded cases and thirty occluded cases, by repeatedly
performing the above steps (i.e., put, stir, and estimate steps).

The comparison results are summarized in Table I. While
both methods exhibit very similar performances in un-
occluded cases, ours largely outperforms the other in the
occluded cases. Although the recognition sometimes fails
even if we take top-three ranks, we can cope with such a
situation by planning a robust handling strategy, as explained
in the next section.

IV. PLANNING OBJECT HANDLING STRATEGIES

The robot tries to lift a target object when it is found
by the object placement estimation. If the target object is
not found, the robot takes an action to remove some objects
so that objects underneath will be visible, hoping the target
object is included there. In this paper, we introduce sweep
motions which can remove multiple objects at once.

TABLE I
COMPARISON OF OBJECT IDENTIFICATION METHODS WITH/WITHOUT

CONSIDERING OCCLUSION.

(a) Number of correctly identified objects at top rank in un-occluded cases.
Methods \ Object ID 1 2 3 4 5 6 7

Proposed 21 7 10 23 22 12 17
No occlusion-aware 21 7 14 23 22 10 16

(b) Number of correctly identified objects at top rank in occluded cases.
Methods \ Object ID 1 2 3 4 5 6 7

Proposed 9 4 10 22 27 4 13
No occlusion-aware 6 0 8 4 15 7 5

(c) Number of correctly identified objects within top-three ranks in un-occluded
cases.

Methods \ Object ID 1 2 3 4 5 6 7
Proposed 27 24 23 23 23 12 17

No occlusion-aware 28 22 23 23 22 10 16

(d) Number of correctly identified objects within top-three ranks in occluded cases.
Methods \ Object ID 1 2 3 4 5 6 7

Proposed 9 18 17 26 27 10 13
No occlusion-aware 12 4 20 14 15 10 5

Object under verification
Hand model 

in the simulator
Detected surface 

by KinectV2 
on the head

Fig. 12. Verification of the lifted object.

A. Lifting a visible target object

The object placement estimation provides a set of target
object candidates with probabilities. If the highest probability
is above a threshold, the target is considered to be found and
will be lifted up by the robot.

The robot lifts the target object using the suction mecha-
nism. The most important condition for a successful lift is
that the tip of the suction nozzle is aligned to the normal of
the surface to be lifted. Since there remains an unconstrained
degree of freedom around the normal, we prepare a fixed set
of angles for that d.o.f. in advance, and test them by checking
if a collision-free hand motion is generated.

Once a feasible hand motion is generated, the robot takes
the motion to touch the suction nozzle to the surface and
starts a suction. After lifting a hand a little, the robot
examines if the object is certainly sucked by checking the
magnitude of the air pressure. If sucked (i.e., sufficiently
low pressure is observed), the robot verifies the object by
observing two different surfaces to see if they correspond
to those of the model of the target object. Fig. 12 shows a
verification scene. If the object is not the target, the robot
puts it at a place different from the container and estimates
the object placement again.
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(a) Sideways motion. (b) Align to the bottom.

Fig. 13. Sweep motion model.

(a) Objects above the

sweep motion.

(b) Objects to be removed

by the motion.

(c) The selected motion by

Criterion 1.

Fig. 14. Sweep motion planning by criterion 1.

B. Planning a sweep motion

The variety of sweep motions is huge and it is difficult to
consider all possible ones. Therefore, we limit the sweeping
direction to the sideways and make it align to the bottom
of the sphere-shaped container (see Fig. 13). We choose
the height of the sweep motion so that it is below by a
fixed distance (currently, 15mm) from the top surface of
the highest object. We consider and compare the following
two criteria for determining a sweep motion.

1) Criterion 1: Maximizing the occluded volume made vis-
ible by the sweep motion: This criterion chooses the sweep
motion which maximizes the currently-occluded volume to
be visible by removing objects on the sweep motion. To this
end, the 3D region occluded by each object is calculated as
the one between the bottom of the object and the container.
The summation of such regions is calculated for each sweep
motion candidate, and the one maximizes the sum is chosen.
This method requires the placement estimation of all objects
in the scene and relatively costly. Fig. 14 shows the selected
sweep motion using this criterion.

2) Criterion 2: Maximizing the point cloud volume on
the sweep motion: This criterion chooses the sweep motion
which maximizes the point cloud volume to be removed
by the sweep motion. The volume is calculated just as the
sum of point cloud data swept by a motion, and no object
recognition is required in this case. Fig. 15 shows the selected
sweep motion using this criterion.

C. Experimental evaluation

1) Comparison of criteria for sweep motion planning:
We first compared the two criteria for planning a sweep
motion. We tested each criterion for cases where the target
object is not visible at the beginning in the container with all
objects. We evaluate the number of sweep motions needed
for making the target object visible and the total time
of motion planning and execution. We also evaluated the
success rate of finding the target object within ten sweep

(a) Objects above the

sweep motion.

(b) Point clouds to be

removed by the motion.

(c) The selected motion by

Criterion 2.

Fig. 15. Sweep motion planning by criterion 2.

TABLE II
COMPARISON OF CRITERIA FOR SWEEP MOTION PLANNING.

Method Ave. # of sweep Ave. time [s] Success rate
Criterion 1 3.6 71.28 0.71
Criterion 2 3.7 45.51 0.76

motions. Table II summarizes the results, which show that the
criterion to maximize the point cloud volume on the motion
(criterion 2) is better, that is, much more efficient and more
successful.

2) Comparison of thresholds for identifying the target
object: The object placement estimation provides the prob-
ability of each detected object being the target object. If
the highest one is above a threshold, the target object is
considered found and the lifting motion is planned and
executed. Changing the threshold will change the robot
behavior. That is, a low threshold increases the number of
directly lifting the target candidate, but at the same time,
increases the verification failure which could increase the
total time. A high threshold increases the number of costly
sweep motions, but will make the rate of successfully lifting
the correct object, thereby decreasing the total time. We
would therefore like to seek a good threshold to use.

Table III shows the results for ten rounds for three thresh-
olds. They are compared in terms of the average execution
time and the success rate. In a low threshold case, the robot
tries to lift a wrong object, which is judged as a most
probable object, many times; if the number of this lifting
trials exceeds a certain number (currently, 20), this round
is considered failure and excluded from the average time
calculation. A relatively short average time comes from a
few lucky cases where the robot encounters a correct object
in an earlier trial. If we continue to the trials until the robot
eventually finds a correct object, the average time would be
much longer. Based on the result, we chose to use 0.9 as the
threshold because its success rate is highest.

3) Comparing Removing Strategy: One possible strategy
to search for an occluded target object is to remove one
object after another until the target will appear. This does
not require a relatively costly sweep motion planning but

TABLE III
COMPARISON OF THRESHOLDS FOR DETERMINING THE TARGET OBJECT.

Threshold Ave. time [s] Success rate
0.9 66.08 0.71
0.5 59.68 0.58
0.3 43.12 0.35
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TABLE IV
COMPARISON OF REMOVING STRATEGIES.

Method Ave. # of actions Ave. time [s] Success rate
Proposed 4.2 70.13 0.67
Simple 11.8 185.10 0.59

sweep motion

sweep motion

sweep motion

lift motion

Fig. 16. Steps for successful taking of a target object.

may need to execute removing actions many times. We
compare our method with this simple one. Based on the
comparisons so far, our method here employs the object
placement estimation considering occlusion and the sweep
motion planning which maximizes the removed point cloud
volume. We also use 0.9 as the threshold for determining the
target object.

Table IV shows the results for ten rounds for the two
removing strategies. They are compared in terms of the
average number of removing actions (i.e., sweeping or lifting
actions), the average execution time, and the success rate.
Since the execution time for one sweep action and that for
one lifting action are similar, executing sweep actions are
advantageous because more objects can be removed at a
time. This result shows the effectiveness of sweep actions
for searching for an occluded target object.

Fig. 16 shows the process of finding a target object (object
4, yellow) by executing three sweep motions and one lift
motion. The total execution time was 47.64 s.

V. CONCLUSIONS AND DISCUSSION

We have developed a system that can find and pick a target
object from a bin with many objects of various kinds. The
system employs the two effective methods. One is to estimate
object placements statistically considering occlusions and
surface-object relationship in the object models. The other
is to plan a sweeping motion that can remove as many
objects as possible that could be occluding the target object.
We implemented these methods on a dual-arm humanoid
robot with an RGB-D camera and a suction mechanism,

and conducted various experiments. The experimental results
show the effectiveness of the proposed methods.

Although the proposed framework is general, the current
implementation is for a limited set of objects and for a
limited environment (i.e., sphere-shaped container). Adding
more objects or introducing a method of automatically gen-
erating object and surface models from, for example, CAD
models (e.g., [1]) is desirable. In addition, since many objects
are in general characterized not only by shape but also
by textures, combining shape and texture features in object
detection and placement estimation is also future work.

The viewpoint is currently fixed because the RGB-D
camera is put on the head of the humanoid. If we put
the camera on an arm or if we add a mobility to the
humanoid, a more elaborated object placement estimation
will be possible by, for example, introducing some viewpoint
planning techniques [15], [16]. Integrating such a viewpoint
planning into the system could further improve its efficiency.
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