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Abstract

This paper describes a method of systematically generating visual sensing strategies based on
knowledge of the assembly task to be performed. Since visual sensing is usually performed with
limited resources, visual sensing strategies should be planned so that only necessary informa-
tion is obtained efficiently. The generation of the appropriate visual sensing strategy entails
knowing what information to extract, where to get it, and how to get it. This is facilitated by
the knowledge of the task, which describes what objects are involved in the operation, and how
they are assembled.

In the proposed method, using the task analysis based on face contact relations between
objects, necessary information for the current operation is first extracted. Then, visual features
to be observed are determined using the knowledge of the sensor, which describes the relation-
ship between a visual feature and information to be obtained. Finally, feasible visual sensing
strategies are evaluated based on the predicted success probability, and the best strategy is
selected.

Our method has been implemented using a laser range finder as the sensor. Experimen-
tal results show the feasibility of the method, and point out the importance of task-oriented
evaluation of visual sensing strategies.
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I. INTRODUCTION

In vision-guided robotic operations, vision is used for extracting necessary information for
proper task execution. Since visual sensing is usually performed with limited resources, visual
sensing strategies should be planned so that only necessary information is obtained efficiently.
To determine an efficient visual sensing strategy, knowledge of the task is necessary. Without
knowledge of the task, it is often difficult to select the appropriate visual features to be observed.
In addition, resources may be wasted in tracking uninformative features.

From this standpoint, research on task-oriented vision, active vision, or purposive vision has
been actively investigated [1, 2, 4, 5, 13]. By using knowledge of the task, the vision system
can be designed to be fast and robust. However, the designing process tends to be task-specific
and requires a significant amount of effort. Thus, it is desirable to develop a systematic method
which can generate task-oriented visual sensing strategies automatically, namely a method that
optimizes each visual sensing strategy according to a given task.

The generation of task-oriented sensing strategy is decomposed into the following three
subproblems to be solved successively:

• determine what visual information is necessary for the current task;

• determine which visual features carry such necessary information; and

• determine how to get necessary information with the sensors used.

The first two subproblems are concerned with focusing the attention to informative visual fea-
tures; the last problem is concerned with evaluation of sensing strategies.

The ability of focusing attention is important to realize efficient visual sensing strategies
[28]. There have been several approaches to this problem.

Hutchinson and Kak [12] dealt with the problem of resolving the ambiguity of sensor infor-
mation. They used Dempster-Shafer theory to represent uncertainties of hypotheses in object
identification. An entropy of a set of hypotheses was used as a utility function; a sensor place-
ment was selected which minimizes the entropy.

Rimey [22] presented a framework of task-oriented vision which can solve high-level vision
problems such as determining which object to search for next to answer a query. The knowledge
of the task is represented by a Bayesian network, and the sensing action is selected which has
the highest expected utility. The utility function is defined as the combination of the predicted
information value and the sensing cost.

Birnbaum et al. [6] presented a vision system which can explain a scene of blocks world in
terms of stability of block structures. Using the rules derived from causal knowledge of naive
physics, the focus of attention is moved to look for evidence that explains the situation.

These works are concerned with exploratory visual sensing tasks under uncertainty of the
knowledge of the scene. The visual feature set, from which the observed features are selected,
is given in advance; it is not automatically derived from the task description.

Kuniyoshi and Inoue [17] proposed a framework of qualitatively recognizing ongoing hu-
man action. Using a hierarchical action model, which is given in advance, possible upcoming
events are predicted, and visual features to observe are selected based on that prediction.

Horswill [10] proposed a concept of specialization for constructing task-specific robot vi-
sion systems. By analyzing the property of the task including the environment in which the
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robot operates, a simple but robust vision algorithm is organized from a set of given small
vision processes.

These works are concerned with the usage of the task, including the constraints on the
environment, for concentrating the visual processing to only the necessary portion of image.
This allows visual recognition to be fast and robust. These approaches are, however, highly
task-specific and are based on the careful a priori examination of the task.

For sensor planning in inspection tasks, several methods have been proposed which generate
a set of features to be observed. Features are indicated directly in the inspection specification
[25] or are selected from the specification of entities to be measured through given knowledge
of the mapping from measurable entities of an object to features to be observed [30]. In sensor
planning for inspection, derivation of the feature set to be observed is relatively easy because
the purpose of the task itself is visual recognition.

Automatic generation of recognition programs can be viewed as sensing strategy planning.
Ikeuchi has been developing Vision Algorithm Compiler (VAC) [8, 14], which can generate
object recognition programs using explicit models of both objects and sensors. A VAC analyzes
the appearances of objects using the models, and generates object recognition programs, usually
in the form of decision trees.

The third subproblem (i.e., how to get necessary information) is decomposed further into
two more specific problems of determining a set of feasible sensing strategies and subsequently
selecting the most appropriate one among them. The goal of the former is to determine sensing
condition which satisfies several requirements on imaging such as resolution, field of view,
focus and visibility [7, 23, 26, 27]. The ability to solve such a problem would be necessary for
any sensor planners as a subroutine of automatically determining feasible sensing conditions.

As mentioned above, the second more specific problem is to determine the best sensing
strategy which maximizes some “goodness” function. The minimum uncertainty criterion has
often been used [16, 29, 31]; some measure of uncertainty, such as the determinant of the co-
variance matrix of the parameter vector to be estimated, is used for selecting the best strategy. In
certain types of tasks, however, this criterion may not be appropriate; some part of information
may need to be more accurate than the rest for a specific task, for example. A weighted sum of
uncertainty parameters is one way to deal with such a case. It is, however, difficult to determine
appropriate weights for a given task. Thus, some appropriate function should be automatically
designed for each task which can measure how each sensing strategy contributes to the proper
execution of the current task.

This paper proposes a novel method of systematically generating visual sensing strategies
based on knowledge of the task to be performed. We deal with visual sensing strategy generation
in assembly tasks, in which the environment is known, that is, the shape, the size, and the
approximate location of every object is known to the system. In this situation, the role of visual
sensors is to determine the position of the currently assembled object with sufficient accuracy so
that the object can be, with a high degree of certainty, mated with other objects. The proposed
method generates optimal sensing strategies by solving the three subproblems mentioned above.

We have been developing a novel robot programming system, the APO (Assembly Plan
from Observation) system [15]. The system generates the description of an assembly task by
observing human performance of the task. The task description is then mapped into an actual
robot to perform the same task. Although the APO system cannot provide direct sensing strategy
from observing human actions, useful information for generating visual sensing strategies is
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automatically obtained from analysis of the observed tasks.
In assembly operations, degrees of freedom of assembled objects are gradually constrained.

Thus, specific degrees of freedom (critical dimension) of the objects need to be observed in
each assembly operation. Section II first briefly explains the face contact analysis of assembly
operations in the APO system [15], and then describes the method of deciding, based on the face
contact analysis, whether the visual feedback is necessary for the current assembly operation.
This analysis also provides the critical dimensions to be observed (what information to extract).
Section III presents a method to determine necessary features to be observed through the analy-
sis of CAD models and the critical dimensions (which features to observe). Section IV provides
the optimal sensing strategy to observe such features (how to observe the features), and Section
V describes an implementation of the sensing strategies and their performance evaluations us-
ing a line laser range finder. Section VI summarizes the paper, and discusses an extension of
our approach to more general visual sensing strategy generation.

II. DETERMINING WHAT INFORMATION IS NECESSARY

This paper assumes that a robot has the capability to perform passive compliant motions
[19], which are the motions to keep the current physical contacts between objects using force
information. Under this assumption, this section examines which assembly operations really
require visual feedback, and which operations can be performed only with passive compliant
motions. The analysis is based on face contact relation transitions between the manipulated and
the environmental objects. First, we describe the analysis results for polyhedral objects with
three translational motions[15]; then, we extend the analysis to include cylindrical objects with
four dimensional, three translational and one rotational motions.

A. Face Contact Relations

We assume that each assembly operation involves one manipulated object and several station-
ary environmental objects that have face contacts with the manipulated object. Face contact
relations are defined between the manipulated and the environmental objects.

Let us suppose a face of the manipulated object has a face contact to a face of an environ-
mental object (See Fig. 1). Each face contact pair constrains the possible translation motions of
the manipulated object: N · ∆T ≥ 0 where ∆T denotes possible translational vectors of the
manipulated object and N denotes the normal of the contact face.

We use points on the Gaussian sphere to specify both a constraint vector and all possible
motion vectors. Each motion unit vector is translated so that its start point is located at the center
of the Gaussian sphere and its end point exists at some point on the surface of the Gaussian
sphere. We use this end point to denote the vector.

The constraint given by a contact face pair defines several regions in the Gaussian sphere.
We refer to the plane perpendicular to the normal, N , as the constraint plane; this plane divides
the Gaussian sphere into two hemispheres. Without loss of generality, assuming that the normal
points to the north pole of the Gaussian sphere, the northern hemisphere corresponds to possi-
ble translational motion directions; the southern hemisphere corresponds to prohibited motion
directions toward which the manipulated object cannot move.
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N constraint plane

Nmanipulated object

environmental object

maintaining
motion directions

Fig. 1: Constraint inequality depicted on the Gaussian sphere.

N

N

maintaining
motion directions

constraint
motion direction

Fig. 2: A bidirectional constraint.

In Fig. 1, motion directions corresponding to the boundary between the hemispheres (the
equator) maintain the current face contact between the manipulated and environmental objects.
Those directions and those degrees of freedom (DOF) are referred to as the maintaining di-
rections and the maintaining DOF, respectively. In this example, maintaining DOFs are two.
Motions of the directions corresponding to the inside of the detaching hemisphere break the
face contact, and are referred to as detaching motions. In this example, a pure detaching mo-
tion, which does not contain any maintaining motion component, is toward the north pole; it
has one degree of freedom (detaching DOF).

When several surface patches of different orientations make contact, possible motion direc-
tions are constrained through simultaneous linear inequalities. These constraints are represented
as a combined region in the Gaussian sphere.

Fig. 2 shows the case where two normal vectors of environmental objects have the opposite
directions. The possible motion directions of the manipulated object can be represented as
the entire great circle perpendicular to the axis connecting the two poles. These motions have 2
DOFs and are maintaining motions. There are no detaching motions; the detaching DOF is zero.
The direction along the surface normal is completely constrained; the degrees of freedom of the
constraint directions (constraining DOF) is one. Note that the sum of the maintaining DOF,
the detaching DOF and the constraining DOF is three, the entire DOF of three-dimensional
translational motions.

We can specify face contact relations by using a triplet of maintaining, detaching, and con-
straining DOFs. For example, using this triplet, the relations of Fig. 1 and Fig. 2 are represented
as(2, 1, 0) and(2, 0, 1), respectively.

In general, possible contact relations are classified into ten contact relations as shown in Fig.
3 [15]. The triplet of DOFs for each relation is also indicated in thefigure.
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S: 3 0 0

A: 2 1 0

B: 2 0 1 C: 1 2 0

D: 1 1 1 E: 1 0 2 F: 0 3 0

G: 0 2 1 H: 0 1 2

I: 0 0 3

Fig. 3: Ten contact states [15]. The white areas in the Gaussian sphere denote possible motion
vectors. Each state has a label. The three digits denote maintaining DOF, detaching DOF, and
constraining DOF, respectively.
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Each assembly step causes atransition from one face contact relation to another. Extracting
the admissible transitions results in the contact state transition graph as shown in Fig. 4. Note
that it was early assumed that there was onlyone manipulated object and several stationary
objects, and that there can thus be no transition to or from state I:(0 0 3).

S

A
B

C

D E

F

G H

Fig. 4: Contact state transitions represented as a directional graph [15].

B. DOF Transitions and Necessary Visual Information

An assembly operation (i.e., a transition of a face contact state) always increases constraints
on some degrees of freedom of the manipulated object. This increment is classified into three
classes: from maintaining DOF to detaching DOF; from detaching DOF to constraining DOF;
and from maintaining DOF to constraining DOF. Fig. 5 shows typical examples of the three
classes.

Let us examine the type of the DOF transition in examples in Fig. 5. In example (a), the
horizontal operation translates the maintaining DOF (horizontal freedom) into the detaching
DOF. The approaching direction of the block is parallel to the direction of the pure detaching
motion at the goal relation A, i.e., the normal vector against the wall. This class of operations
can be performed by a compliant motion without visual feedback such as a move-to-contact
operation.

In example (b), the vertical operation translates the detaching DOF of the horizontal di-
rection to the constraining DOF. A compliant motion maintains the contact between the block
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(a) (b) (c)

Fig. 5: Three typical cases of increase of constraint on a degree of freedom. Type and transition
of the triplet is as follows: (a): maintaining→ detaching ((3, 0, 0) → (2, 1, 0)). (b): detaching
→ constraining ((2, 1, 0) → (2, 0, 1)). (c): maintaining→ constraining ((3, 0, 0) → (2, 0, 1)).

and the right wall and achieves the desired horizontal position. Thefinal constraining DOF is
automatically achieved by this compliant motion, e.g., move-with-maintaining-contact, without
visual feedback.

In example (c), the vertical operation translates the maintaining DOF of the horizontal direc-
tion to the constraining DOF. The horizontal position of the block needs to be adjusted before
mating so that both the left and the right face contacts are achieved simultaneously. Before
this operation, along the horizontal maintaining degree, a manipulated object has no physical
contact; after this operation, the constraining degree from both walls occurs simultaneously.
Thus, simple compliant motion cannot achieve such translation. This operation needs visual
feedback; this degree, which is referred to ascritical dimension, should be observed by visual
feedback.

We can summarize the above arguments into the following criteria:

1. maintaining DOF to detaching DOF: no visual feedback is necessary.

2. detaching DOF to constraining DOF: no visual feedback is necessary.

3. maintaining DOF to constraining DOF: visual feedback is necessary.

Applying these criteria to thirteen admissible transitions in Fig. 4 provides four transitions
that require visual feedback (S-to-B, S-to-E, A-to-E and B-to-E) indicated with bold lines in
Fig. 6.

C. Extension of Face Contact State

So far the analysis covers only three-dimensional translation motions with planar face contacts.
We will extend the analysis to include one additional rotational motion about thez axis. This
extended analysis denotes face contact relations with a sextuplet of DOFs, one triplet for trans-
lational DOFs and another triplet for rotational DOFs.

We also include cylindrical objects for the analysis. We define the three classes of contact
relations between cylindrical surfaces as shown in Fig. 7. No contact, half contact, and full con-
tact in Fig. 7 correspond, respectively, to maintaining DOF, detaching DOF, and constraining
DOF with respect to the translational motion perpendicular to the axis of rotation. Since this
paper deals with only face contact relations, we do not consider cylindrical-planar contacts.

This extension allows the system to handle a large class of realistic operations with industrial
parts, including gears mating and bolt-nut operations, as shown by experiments later. It is also
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S

D

B

E

C

G H

F

A

Fig. 6: Classification of state transitions. Bold lines indicate the transitions that require visual
information. Thin lines indicate the transitions that do not require visual information.

Object
three contact states
of a cylindrical surface

Fig. 7: The object considered in the contact state analysis.
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true that our Robotworld testbed has these four degrees of freedom. Extension to point and/or
line contact cases, or to general 6 DOF cases will be discussed in the conclusion section.

Fig. 8 summarizes the analysis result. Here, the possible face contact relations are arranged
according to their sextuplets of DOFs.

We enumerate possible transitions between contact relations. Eightyfive admissible transi-
tions are extracted, as shown in Fig. 9, by applying the selection criteria for admissible transi-
tions to all possible transitions. Labels in thefigure (e.g., A1) are defined in Fig. 8.

The transition graph is expected to be more complicated if the number of allowable states
increases. Once the graph is constructed, however, the complexity of the graph is not a se-
rious problem, because the graph is used for recognizing human operations by matching the
recognition result with the graph.

We consider an infinitesimal rotation. Such an infinitesimal rotational motion is equivalent
to an infinitesimal translational motion in terms of face-contact relation transition. We can use
the same criteria for selecting assembly operations that require visual feedback in this four-
dimensional case.

By examining the sextuplet transitions in eightyfive cases, nineteen transitions are selected
as those that require visual feedback. These selected transitions are as shown with bold solid
and bold broken arcs in Fig. 9. We can group these nineteen cases into six groups with respect
to the degrees of freedom necessary to be observed. Fig. 10 shows the representative examples
of these six groups.

III. FEATURE SELECTION

This section describes how to select a set of features that carry sufficient dimensional infor-
mation for executing the operation with visual feedback resulting in the transition from main-
taining DOF to constraining DOF.

A. Sensing Primitive

A sensing primitive describes the relationship between an observable feature, such as edges
or planar faces, and its degrees of freedom obtainable by observing it. Examples of sensing
primitives are shown in Fig. 11. For example, by observing a straight line in 3D space, all the
translation freedoms except those along the straight line are constrained. This constrained area,
AT

i , given by this primitive feature is denoted as the shaded area on the Gaussian sphere. All
the rotations except that about the line are also constrained; the entire sphere except for a pair
of points is constrained (seeAR

i in Fig. 11).

B. Feature Selection Process

The analysis of face-contact relation transition by the current task provides constraining DOF
added by this task. A set of observable features is obtained by examining the current CAD-
based internal-world model. By consulting prepared sensing primitives with the observable
features, a set of features required to be observed is obtained.

As an example of this process, let us consider case (a) peg-in-hole operation shown in Fig.
12. For the sake of simplicity, we will consider the case (a)’s translation operations. Before
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A1 A2 A3

B1 B2 B3

C1−1 C2−1C1−2 C2−2

D1−1 D1−2 D1−3 D1−4 D2−1 D2−2 D2−3 D2−4 D3
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F1 F2
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Fig. 8: Summary of extended contact state analysis.
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C1−2
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D2−1 D2−2 D2−3 D2−4
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insertion
guided−motion
guided−motion + move−to−touch
guided−motion + insertion

D3D1−1
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H3−1

H3−2

I2 I3

Fig. 9: Transition graph for extended analysis.
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(a)

contact

(b) (c)

(d)

contact

(e)

contact

(f)

Fig. 10: Transition groups which need visual information. Thick arrows indicate the direc-
tion of movement. Thin arrows indicate degrees of freedom to be adjusted by use of visual
information. The transition of sextuplet for each case is as follows: (a):(3, 0, 0; 1, 0, 0) →
(1, 0, 2; 0, 0, 1). (b): (2, 1, 0; 0, 0, 1) → (1, 0, 2; 0, 0, 1). (c): (3, 0, 0; 1, 0, 0) → (2, 0, 1; 0, 0, 1).
(d): (3, 0, 0; 1, 0, 0) → (1, 0, 2; 1, 0, 0). (e): (1, 0, 2; 1, 0, 0) → (1, 0, 2; 0, 0, 1). (f):
(1, 0, 2; 1, 0, 0) → (0, 0, 3; 1, 0, 0).
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T Ai
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Fig. 11: Example sensing primitives represented by the Gaussian spheres.
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Fig. 12: Two insertion operations and dimen-
sions to be monitored.
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Fig. 13: Constraints obtained by observing one
of the edges.
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the insertion operation, the manipulated object has a full three dimensional maintaining DOF.
After this operation, the manipulated object has an equator of constraining DOF. Thus, the (a)
insertion operation translates two dimensional maintaining DOF perpendicular to the insertion
direction to two dimensional constraining DOF, referred to as critical DOF to be monitored with
visual feedback. Fig. 12(a) depicts the full equator on the Gaussian sphere to depict these DOF.

Before case (b) operation, the manipulated object has a two-dimensional maintaining DOF
as an equator perpendicular to the normal of the contact face. The constraining DOF after the
operation is the same as in the (a) operation. Thus, the (b) operation translates one dimensional
maintaining DOF along thex axis to one dimensional constraining DOF, which is indicated as
a pair of points on the equator in Fig. 12(b). The visual feedback is necessary along thex axis,
but is not necessary along they axis.

Fig. 13 shows two sensing primitives. By observing edgee1, all the translation motions,
except those along they axis are constrained. Edgee2 also provides similar constraints. In order
to cover the full circle of the critical DOF in case (a) in Fig. 12, bothe1 ande2 are necessary to
be observed. On the other hand, onlye1 is sufficient for case (b) to cover the pair of points of
the critical DOF.

This procedure can be formalized as follows: Since constraints for translational operations
and that for rotational operations can be considered separately, we take two Gaussian spheres,
GT andGR, and use points on each sphere to represent constraints on translations (onGT ) or
on rotations (onGR). Let us denote:

• AT
critical (AR

critical) as a set of points onGT (GR) to be translated from maintaining DOF
to constraining DOF (critical DOF).

• AT
i (AR

i ) as a set of points onGT (GR) which represents constraints given by the obser-
vation of theith sensing primitive.

By observingn different sensing primitives, the following two resultant point sets,AT
constrained

andAR
constrained, are obtained:

AT
constrained =

n⋃

i=1

AT
i ,

AR
constrained =

n⋃

i=1

AR
i .

In order that this set of features provides sufficient constraints, the resultant area should cover
the critical DOF. Namely, the following condition must be satisfied:

AT
critical ⊆ AT

constrained

and

AR
critical ⊆ AR

constrained.

The equality signs indicate that exactly the required information is provided by observation,
whereasAcritical ⊂ Aconstrained indicates there is more information than required.
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IV. EVALUATION OF SENSING STRATEGIES

Once a set of features to be observed is selected, a set of possible sensor positions, from
which all of the selected features are observable, is enumerated [7, 23, 26]. We determine
the optimum sensing position among those possible sensing positions by evaluating them with
respect to accuracy of the estimated object position. Evaluation methods based on covariance
matrix are relatively common in unconstrained environments such as navigation application [3,
29]. Such covariance methods are not so satisfactory to reflect the relative importance of sensing
dimensions given by the relationship between faces of manipulated and environmental objects.
Thus, we decided to develop our novel method based on an operation’s success probability.

A. Predicted Success Probability

A poor positional estimation of a manipulated object provides poor operational performance;
an accurate estimation provides high performance. Thus, the predicted success probability of a
current operation provides a measure of accuracy of the sensing strategy.

The success probability is determined by three steps. Thefirst step calculates a success
region, the sub-space of the positional parameters in critical DOF such that if the uncertainty is
inside the space, the current operation succeeds. The rectangular area in Fig. 14 is an example
of the success region. The relative tolerance of the manipulated and environmental objects
along the critical dimensions, given by the analysis of CAD models, provides the area. The
second step calculates the uncertainty distribution of the measurements given by the current
sensing strategy (the ellipse area in Fig. 14). Thefinal step obtains the predicted success
probability by the intersection between the success region and the uncertainty distribution of
the measurements. This success probability is numerically calculated by quantizing the space
of the positional parameters.

The predicted success probability is a general criterion for ranking sensing strategies, and
is applicable to any sensors as long as the probabilistic model of uncertainty is provided; in
addition, the uncertainty is not necessarily modeled with Gaussian.

∆X

∆Y

Uncertainty ellipse (ellipsoid)
obtained from the sensor model

Success region  obtained from
the CAD−based world model

Fig. 14: Calculation of the predicted success probability. This figure shows the case where the
position parameter of the object is two-dimensional,(X, Y ).

After calculating the success probabilities for all feasible sensing strategies, the one with
the highest probability is selected as the optimal sensing strategy.
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B. Success Region

A success region is formed in a space of critical DOF, those translated from maintaining to
constraining DOF, in each operation. For example, the (a) peg-in-hole operation in Fig. 12
has three degrees of freedom of critical DOF, two translational on the plane perpendicular to
the insertion direction and one rotational around the insertion direction. A success region is a
representation of the clearance of the operation in the critical DOF from the CAD models of
objects; it can be calculated as a free area in the configuration space [18].

Since the current system consists of the assembly operations with planar or cylindrical sur-
faces, the following three cases are sufficient for consideration: (i) insertion of a polygonal
cross-section peg with a hole (cases (a) and (b) in Fig. 10); (ii) insertion of a peg with a polygo-
nal cross-section into a parallel gap (cases (c), (e) and (f) in Fig. 10); (iii) insertion of a peg with
a circular cross-section into a hole (case (d) in Fig. 10). If there are some constraints before the
operation (e.g., case (b) in Fig. 10), the actual success region is given as a cross-section of the
general success region cut by fixed parameter values under the constraints.

Here, as an example, we derive the success region for the peg-in-hole operation shown in
Fig. 15. Edges of the hole are aligned to theX and theY axes. LetWX andWY be the widths
of the peg in theX andY axes, respectively. Also, letk denote the clearance ratio of the hole.
These values come from the CAD model. We need to adjust the position and the orientation of
the peg,(X, Y, θ).

X

Y
Y(1+k)W

X(1+k)W

WX

WY

∆θ

(X+   X, Y+   Y)∆ ∆

Fig. 15: Top view of rectangular peg-in-hole operation.

We calculated the actual success regions for two sets of geometric values. Fig. 16 shows
the resultant success regions. As shown in the figure, the tolerance in∆X in case (b) is larger
than that in case (a), while the tolerance in∆θ is smaller. If the uncertainty distribution of the
position parameter is the same in both cases, the resultant success probabilities should differ
from each other because of different success regions. Thus, the effect of the uncertainty in the
parameter vector to the task execution needs to be evaluated by considering the success region.
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∆θ

∆X

∆Y

2.491

(mm)

(mm)

(deg.)

0.397 0.397

(a)WX = 19.05 (mm),WY = 19.05 (mm),
k = 0.043.

(mm)
(mm)

∆θ (deg.)

Y∆
X∆

1.246

0.7940.397

(b) WX = 38.10 (mm),WY = 19.05 (mm),
k = 0.043.

Fig. 16: Example success regions.

V. EXPERIMENTS

A. Laser Range Finder

The proposed sensing method has been implemented using a Toyota line laser range finder
(LRF) as the sensor (see Fig. 17) [20]. The LRF emits a slit laser, detects the highlighted
portion of the object with a TV camera, and obtains a line of 3D measurements. The LRF is
attached to one of the arms in the RobotWorld [24]. All the arms have four degrees of freedom:
three degrees of freedom for translation and one degrees of freedom for rotation about the
vertical axis (the z axis).

mobile platform

TV camera

slit−laser source

Fig. 17: A line laser range finder.

All assembly operations that require visual feedback belong to the “peg-in-hole” class op-
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eration. The location of a peg is measured by observing its side faces; the location of the hole
is measured by observing several points (currently, five points) on its edges. Thus, we prepare
sensing primitives for the following four geometric features: a straight edge, a circular edge, a
planar face and a cylindrical surface.

We use a general sensing strategy that measures by moving the LRF in parallel with the
insertion direction (see Fig. 18); the relative displacement on the plane perpendicular to the
insertion direction is important for the operation. We also control the position of the range
finger so that each measured point is within a certain area of the slit laser; the uncertainty of the
measurement with the LRF is considered to be constant in this area. Thus, the only parameter
that specifies the position of the range finder is the angle between the direction of the laser and
some axis of the plane perpendicular to the insertion direction (see Fig. 19).

observe a peg

observe a hole

move 
range finder

Fig. 18: A strategy for observing a peg and a hole.

range
finder

manipulator

φ

Vo

observed feature
(peg and hole)

Fig. 19: Candidate positions.

The actual assembly operations with visual feedback are implemented to perform in a “stop
and sense” mode. First, a peg is moved by a manipulator to the position just before a hole. Then,
the LRF is placed in the planned position, and measures the position of the hole and the peg. If
the error in the relative position between the peg and the hole is within the success region, the
peg is inserted. Otherwise, the peg position is adjusted and the peg is observed again. This final
step is repeated until the relative position becomes satisfactory, and then the peg is inserted.

For evaluation of the proposed method, we conducted three operations: a peg-in-hole op-
eration, an operation that consisted of putting the tip of a screwdriver into the slot of a screw
head, and a gear-mating operation. We then compared the success probability predicted by the
object models and sensor models, with the actual success ratio, obtained through fifty trials of
the operation by the robot arm and the sensor.

B. Uncertainty Model

Our laser range finder provides measurements with accuracy better than 0.1 [mm] in depth
and better than 0.3 [mm] in the horizontal position. The depth and the horizontal position
are measured on the laser plane. The purpose of this paper is, however, not to construct an
uncertainty model of our laser range finder, but to demonstrate that our method can generate the
optimal sensing strategy if the uncertainty model of the sensor is given. Thus, we artificially
added a relatively large Gaussian noise to the measurement; we added a Gaussian noise with a
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standard deviation 0.12 [mm] to the depth measurement, and a Gaussian noise with a standard
deviation 0.30 [mm] to the horizontal position measurement; these two Gaussian noises are set
to be independent of each other.

C. A Peg-in-Hole Operation

1) Face Contact Analysis:
The peg-in-hole operation inserts a rectangular-cross-sectional peg into a hole of the same

shape. This operation belongs to group (a) in Fig. 10; the state transition is from (3,0,0;1,0,0)
to (1,0,2;0,0,1). The critical DOF consists of two translational and one rotational degree. These
dimensions will be monitored through visual feedback.

Let us consider the case in Fig. 20. This insertion operation establishes the following face
contact: (f1-f ′

1), (f2-f ′
2), (f3-f ′

3) and (f4-f ′
4). The candidate features for observation include

f1, f2, f3 and f4 for the peg, and e′1, e′2, e′3 and e′4 for the hole. The sensing primitive analysis
indicates that observing two neighboring faces, such as f1 and f2, and edges, such as e′1 and e′2,
provides sufficient information.

Considering the conditions that five points are completely observed on an edge, and that the
LRF does not collide with the robot manipulating the peg, the possible position of LRF is on
the circle. The circle’s center is located at the vertex at the intersection of the two neighboring
edges. The laser plane is pointing toward the vertex. The position of the sensor is measured as
the angle (φ) from one of the edge. Fig. 21 shows a successful peg-in-hole operation.

insertion
direction

f1

f2

f
3

f4

f’
1

f’2

f’3
f’4

e1
e3

e4

e2

e’1
e’2

e’3

e’4

S:(3, 0, 0; 1, 0, 0)

E1−1:(1, 0, 2; 0, 0, 1)

adjust x, y and θ

Fig. 20: Face contact analysis of the rectangular peg-in-hole operation. The sextuplet of DOFs
(see Section II-C) changes from (3, 0, 0; 1, 0, 0) to (1, 0, 2; 0, 0, 1).

2) Verifying the Accuracy of the Predicted Success Probability:
We verify the accuracy of the predicted success probability using the actual success ratio in

the following two sets of the objects:
Case (a): The cross-section of the peg is a square of 19.05 [mm] × 19.05 [mm]. The clearance
ratio of the hole is 0.043. The success region of this operation is depicted in Fig. 16(a).
Case (b): The cross-section of the peg is a rectangle of 38.1 [mm]× 19.05 [mm]. The clearance
ratio of the hole is 0.043. The success region of this operation is depicted in Fig. 16(b).
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before insertion

1

observe the hole

1 22

3

observe the peg
and adjust its orientation

4

peg is inserted

projected
slit laser

projected
slit laser

Fig. 21: A successful peg-in-hole operation.

In each case, the observation angle, φ, is sampled every 10 degrees; at each angle, the
insertion operations were performed 50 times to obtain the ratio between success and failure.

Fig. 22 shows the verification results; in both cases, the results given by actual performances
(dots) coincide with the predicted success probability (solid curves).

D. Putting Screwdriver on Screw

This example considers the insertion of a screwdriver into the slot on a screw head as shown in
Fig. 23. This operation belongs to group (c) in Fig. 10. During this operation, the critical DOF
are one DOF for translation and one DOF for rotation. The face contacts to be achieved are (f1-
f ′

1) and (f2-f ′
2). The candidates for observed features are f1, f2, f3 and f4 for the screwdriver,

and e′1 and e′2 for the hole.
Due to the geometric constraints between arms for the screwdriver and for the LRF, the

screwdriver and the screw could not be observed at once. Thus, the LRF observed only the screw
because the positional uncertainty of the screw was much larger than that of the screwdriver.
Edges e′1 and e′2 of the screw were observed. Fig. 24 shows a successful operation of putting a
screwdriver on a screw.

Fig. 25 shows the verification result of the predicted success probability with the actual
success ratio. The predicted success probability coincides with the actual success ratio.

E. Gear Mating

A gear-mating operation, shown in Fig. 26, belongs to group (e) in Fig. 10. In this operation,
a priori knowledge about how gears are mated is necessary because there are many potential
matches between gear teeth. First, two virtual edges e1 and e′1 are generated; one edge is placed
on the center of the nearest tooth to the line connecting two gear centers; another edge is placed
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1.0

0.8

0.6

0.4

0.2

20.0 30.0 40.0 50.0 60.0 70.0
φ

(deg.)

predicted success probability

probability
of success

actual success ratio

Case (a)

1.0 

0.8

0.6

0.4

0.2

20.0 30.0 40.0 50.0 60.0 70.0
φ

(deg.)

predicted success probability

probability
of success

actual success ratio

Case (b)

Fig. 22: Comparison of the predicted success probability with the actual success ratio in the
peg-in-hole operation.

1
f 2f

1
f’ 2f’

1e
2e

1e’
2e’

f3
f4

adjust x and θ

direction of
insertion

S:(3, 0, 0; 1, 0, 0)

B1:(2, 0, 1; 0, 0, 1)

Fig. 23: Contact state analysis of putting a screwdriver on a screw.

adjust position push screwdriver

2 31

observe the screw

Fig. 24: The screwdriver was successfully inserted into the slot of the screw head.
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1.0

0.8

0.6

0.4

0.2

20.0 40.0
φ (deg.)

predicted success probability

probability
of success

0.0−20.0−40.0

actual success ratio

Fig. 25: Comparison of the predicted success probability with the actual success ratio in the
screwdriver-bolt operation. The angle φ indicates the difference of the directions of the LRF
and the slot.

on the center of the nearest gap to the line. Then, the orientation of the inserted gear is adjusted
so that these two virtual edges are aligned.

The position of a virtual edge is calculated from the position of the edges on the tooth (or
gap) on which the virtual edge is set (see Fig. 27). Assuming that the shape of the tooth is
almost rectangular, the virtual edge is obtained by fitting a line to the center points of the edge
point pairs.

adjust θ

direction of
insertion

e’1
e1

E3:(1, 0, 2; 1, 0, 0)

E1−4:(1, 0, 2; 0, 0, 1)

Fig. 26: Contact state analysis of gear mating.

virtual edge
tooth of gear

...

measured points

Fig. 27: Measuring the tooth position from
edge positions.

Fig. 28 shows a successful gear-mating operation. Fig. 29 shows the comparison of the
predicted success probability with the actual success ratio. The predicted success probability is
consistent with the actual success ratio.
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Observe the upper gear
and adjust its orientation.

Gears are mated.

1 2

3 4

Before the operation. Observe the lower gear.

Fig. 28: The gears were successfully mated.

φ (deg.)

1.0

0.8

0.6

0.4

0.2

predicted success probability

probability
of success

15.0−15.0 0.0

actual success ratio

Fig. 29: Comparison of the predicted success probability with the actual success ratio in the
gear-mating operation. The angle φ indicates the difference of the directions of the LRF and the
line conneting two gear centers.
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VI. CONCLUDING REMARKS

We have described a method of systematically generating visual sensing strategies using
the knowledge of the task to be performed. The analysis of face contact transitions decides
1) whether the current operation requires visual feedback, and 2) which, if any, degrees of
freedom (critical DOF) is required to monitor during the operation through visual feedback.
Then, sensing primitives convert the critical DOF and the CAD models into a set of visual
features to be observed. The final sensing strategy selected is the one with the highest predicted
success probability among possible sensing strategies that observe the set of visual features. The
proposed method is implemented using a line laser range finder as the sensor. The experiments
are conducted to verify our evaluation method for choice of the optimal sensing strategy.

The features of the proposed method are summarized as follows: (1) the necessary visual
information and the visual feature set to extract such information, which have been given in the
previous works, are derived automatically from the task description; (2) the criterion using the
predicted success probability to rank the set of sensing strategies is a general one and is effective
regardless of the shape of objects and the uncertainty models of the sensors used.

This paper has dealt with the assembly operations in which only face contacts are allowed
among possible contacts between objects. Assembly tasks that require full 6 DOF motions
cannot be analyzed using only surface normals. Thus, we are now reformulating the contact-
state analysis using the theory of polyhedral convex cones [21]; the new analysis covers face,
point, and line contacts and can, in principle, handle general 6 DOF motions. The arguments on
necessary visual information in Section II-B could be applied to the result of this new analysis.

If point contacts and/or line contacts are allowed, most assembly operations can be achieved
with only force information [9]. Even in such a case, visual information will be useful in, for
example, reducing the number of motion steps [11]. A future work is to develop a method of
coordinating vision and force information for robust and efficient assembly task execution.

Another future work is to apply the proposed method to other sensors such as stereo vision.
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