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Abstract— Map-based outdoor navigation is an active re-
search area in mobile robots and autonomous driving. By
preparing a precise map of an environment or roadside, a robot
or a vehicle can localize itself based on a matching between the
map and a sequence of sensor inputs. This paper describes a
campus-wide mapping and localization of a mobile robot with
2D and 3D LIDARs (Laser Imaging Detection and Ranging).
For mapping, we use a 3D data acquisition system with a 2D
LIDAR and a rotation mechanism and takes a sequence of point
clouds. We adopt an NDT (Normal Distribution Transform)-
based ego-motion estimation method for pose graph generation
and optimization for loop closing. For localization, we propose
to use a 2D LIDAR on a robot for being matched with a 3D
map for a fast and low-cost localization. The mapping and the
localization method are validated through the experiments in
our campus.

I. INTRODUCTION

There is an increasing demand for mobile services robots
which support human life in various ways, and the opera-
tional areas of such robots are expected to extend from indoor
to outdoor environments. Autonomous navigation capability
is essential for mobile robots, and accurate localization is
therefore a key function.

Localization using pre-registered information can be di-
vided into map-based (e.g., [1], [2]) and view-based (e.g.,
[3], [4]). The former utilizes a matching between a geometric
map and input sensory data, while the latter is based on
an image-to-image matching. This paper pursues the former
because using a 3D geometric map is more general and
suitable for a large-scale mapping and localization in outdoor.

SLAM (Simultaneous Localization And Mapping) tech-
nologies [5] are usually used for autonomous map making
by a mobile robot. For a large-scale mapping, loop closing
[6] is a key to cope with accumulated pose errors. Recent
progress in optimization methods (e.g., [7]) makes it possible
to generate a large-scale map efficiently. Once we have a 3D
map of the environment, we can adopt 3D scan matching
methods like ICP [8] or NDT [9] for robot pose estimation,
probably combined with statistical filtering techniques [10].

3D LIDARs such as Velodyne scanners have been gaining
popularity due to their ability of obtaining very rich 3D
information and it is very suitable for 3D mapping and
localization in outdoor environments where various objects
including natural ones exist. It is, however, costly to use such
a high-definition 3D LIDAR if it should be installed on all
autonomous robots/vehicles. Therefore this paper proposes
to use a more cost-effective 2D LIDAR as a sensor on a
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robot. We experimentally validate the effectiveness of using
a 2D LIDAR as the sensor on the robot as long as we have
a reasonably accurate 3D map of the environment. Note that
3D sensing is necessary only for the mapping stage which
does not have to be carried out in real-time.

The contributions of the paper is twofold. One is to ex-
perimentally evaluate a 3D LIDAR-based large-scale outdoor
mapping in our campus including large loops. The other is
show the effectiveness of on-line localization using 3D-2D
matching by off-line and on-line experiments.

The rest of the paper is organized as follows. Section II
describes related work. Section III describes a 3D mapping
with loop closure and shows the results for our campus.
Section IV describes a localization method based on a 3D
map-2D scan matching and experimental evaluations. Section
V concludes the paper and discusses future work.

II. RELATED WORK

A. 3D mapping with loop closure

3D mapping is done by integrating a sequence of 3D scans
using the estimated robot poses. When a robot travels by a
long distance with loops, it may suffer from accumulated
ego-motion estimation errors thereby reducing the accuracy
of pose estimation. Therefore loop closing is the most
important step especially in large-scale mapping [6], [11],
[7].

Many image-based loop closure detection methods [12],
[13], [14] have been proposed. They characterize locations
with an image feature such as BOVW (bag of visual words)
[15] and compare the current image with past ones to find
loop closures. Integration of 2D image and 3D shape or point
features are also proposed [16], [17]. Calculation of image
features is relatively costly and image-based matching could
suffer from a sensitivity to illumination changes.

B. Map-based localization

Given a map of the environment, a robot can localize itself
by matching the current input with the map. In probabilistic
localization approaches (i.e., Markov localization [5]) using
a grid or voxel map, the similarity between the map and the
current scan is used as the likelihood of observation [18].

If we have a precise 3D map, localization is to register
the current scan with the map. In this registration, many
scan matching approaches can be adopted such as ICP
(iterative closest point) [8], GICP (Generalized ICP) [19],
NDT (Normal Distribution Transform) [9]). For so-called 6D
localization, which estimates full six degrees of freedom of



Fig. 1. A 3D scanning system.

(a) scan 1. (b) scan 2.

(c) NDT matching result.

Fig. 2. NDT matching of 3D scans.

robot pose, 3D LIDARs are usually used but they suffer from
a high cost and a relatively long computation.

III. 3D MAPPING WITH LOOP CLOSURE

A. 3D scanning

We use a combination of a 2D LIDAR (Laser Imaging
Detection and Ranging, LMS151 by SICK) and a pan-tilt
(p/t) unit (PTU47 by FLIR, using its one axis) to acquire
3D scans (see Fig. 1). We rotate the p/t unit with a fixed
speed while taking data by the LIDAR. Using the system,
we can acquire the scans as shown in Fig. 2(a)(b). LMS151
can acquire 1081 point data per scan for a 270◦ field of view
with 0.25◦ angular resolution. We rotate PTU47 by 180◦ in
about twenty seconds for getting 357 scans. As a result, the
system can acquire 385,917 point data by one observation.

B. 3D mapping using NDT and pose graph optimization

The edges of a pose graph are usually generated by the
following two ways. One is for a pair of consecutive poses
and given by an ego-motion estimation between them. The
other is by loop closure which finds a revisit of the (almost)
same location.

1) Ego-motion estimation using NDT: We estimate ego-
motions by comparing two consecutive 3D scans. Among
various scan matching approaches, we compared three meth-
ods, namely, ICP, GICP, and NDT. We used PCL (point
cloud library) [20] implementations and compared for a route
of about 1.2km in our campus. The route includes various
scenes such as building-rich regions and tree-rich ones, and

NDT shows the most robust performance and efficiency. We
therefore select NDT for the scan matching for ego-motion
estimation.

In NDT, a relative pose between two point clouds (we
call them a reference point cloud and an input point cloud)
is calculated as follows.

(1) The reference point cloud is divided into voxels and
the point distribution in each voxel is approximated by
a Gaussian.

(2) A matching score is calculated by:

score=−
N∑

k=1

exp

{
− (xk − µk)

TΣ−1
k (xk − µk)

2

}
, (1)

where N is the number of input points, µk and Σk

are the mean and the covariance matrix for the voxel
which includes the kth input point xk transformed by
the current relative pose.

(3) Update the relative pose using a Quasi-Newton
method.

(4) Repeat steps (2) and (3) until convergence.
2) Loop closure detection: We use two ways of detecting

loop closures, with and without GPS readings. After candi-
dates pairs of loop closing poses, they are verified using the
NDT-based matching.

a) Loop closure candidate detection based on GPS
data: The first one uses GPS data for detecting pairs of
poses which are sufficiently near to each other, and then
verifies them with calculating relative poses using NDT. The
candidate detection step requires a distance calculation be-
tween poses. Following Hubeny’s formula [21], the distance
D between two poses is given by:

D =

√
(Mdφ)

2
+ (N cos(Φ)dλ)

2
, (2)

M =
6335439√(

1− 0.006694 sin2(Φ)
)3 , (3)

N =
6378137√

1− 0.006694 sin2(Φ)
, (4)

where M and N are the radius of the meridian and the prime
vertical circle, respectively, Φ is the average of two latitude
values, dφ and dλ are the difference of latitude and longitude
of the two locations, respectively. We use GPS PathfinderPro
by Tremble as a GPS receiver, and set the threshold for the
distance to 5m. If the distance between two poses is less
than the distance threshold, they are judged as a loop closure
candidate.

b) Loop closure candidate detection based on a shape
signature and the accumulated position estimates: The sec-
ond way of detecting loop closures does not use GPS data but
uses a shape signature and the absolute position estimation
through the accumulation of ego-motion estimates. We use
the classification of each voxel by [9] and describe a scene
(i.e., 3D scan at a pose) by a histogram of the following three
classes. Let the eigenvalues of the distribution of a voxel be
λ1 ≤ λ2 ≤ λ3 and classify it as follows:

• The distribution is linear if λ2/λ3 ≤ 0.1.



• The distribution is planar if they are non-linear and
λ1/λ2 ≤ 0.1.

• Otherwise, the distribution is spherical.

The voxel is 5m cube and use points within 20m from
the robot are used for histogram calculation. If two poses
is within a certain distance using the accumulated position
estimates and the histogram is similar enough, they are
judged as a loop closure candidate. This signature is very
simple to calculate but effective as shown in the mapping
results below.

c) Candidate verification by NDT: We apply NDT
to detected candidates to calculate the relative pose and
the degree of matching (i.e., the root mean squared error
(RMSE)). The RMSE is calculated by:

eRMSE =
1

N

N∑
k=1

√
dx2

k + dy2k + dz2k, (5)

where dk∗ is the positional difference between an input point
and the corresponding nearest-neighbor reference point in
each axis, and N is the number of input points. If this error
is less than a certain threshold (currently, 1m), we add a new
edge between the poses with the estimated relative pose.

3) Optimization: Pose graph optimization is to calculate
the optimal set of poses by solving the non-linear optimiza-
tion problem in the following form [7]:

F (x) =
∑
i,j

e(xi,xj , zij)
TΩije(xi,xj , zij), (6)

x∗ = argmin
x

F (x), (7)

where x = (xT
1 , . . . ,x

T
n )

T is a set of pose parameters and
xi is the robot pose at ith observation; Ωij is the information
matrix representing a constraint between ith and jth pose,
and zij is their relative pose given by the ego-motion
estimation; zij is represented by a concatenation of relative
translation tij and relative rotation qij in a quaternion form;
e(xi,xj , zij) is the error function evaluating the difference
between the estimated and the observed relative pose.

We use g2o library [7] for pose graph optimization. The
information matrix is related to the certainty of relative pose
estimation using NDT. We thus define Ωij as follows:

Ωij =

(
Ωpos

ij 0

0 Ωrot
ij

)
, (8)

Ωpos
ij = I/(σ2

pos · eij), (9)

Ωrot
ij = I/(σ2

rot · eij), (10)

where I is an identify matrix, eij is given by eRMSE in
eq. (5), and σ2

pos and σ2
rot are the variance of positional and

rotational errors (currently both are set to 1.0).
Fig. 3 shows the result and the effect of loop closing. Fig.

3(a) is a route for acquiring 3D scans (b) shows the final
pose graph with markers on the added edges by the loop
closing. Fig. 3(c) and (d) compare the map before and after
the pose graph optimization. Inconsistencies of the map at
many places have been solved in (d). The final graph has 183
nodes and 262 edges and the optimization took 0.0133[sec.]

(a) The route for acquiring 3D scans.

(b) The graph after loop closure detection.

(c) The map before loop closing.

(d) The map after loop closing.

Fig. 3. Result of pose graph optimization. The colors in the map indicate
the height.

using a PC with Core i7-6700K and 16GB memory.

C. Large-scale mapping result

Fig. 4 shows the result of generating a larger map. Fig.
4(a) shows the route for acquiring 283 scans and Fig. 4(b)
shows the mapping result. Fig. 4(c) shows a 3D view of a
part of the map. We can see a good map is obtained.

IV. ON-LINE LOCALIZATION WITH 3D-2D MATCHING

Map-based localization is performed by matching between
a map and the current sensor readings. To cope with abrupt
sensing errors and/or feature-scarce environments, filtering
techniques are usually used [5]. In the case of outdoor
localization using a 3D map, a usual way is to use a 3D
sensor for 3D-3D matching. However, it is costly to equip a
3D LIDAR for every robot just for localization. We therefore
pursue an approach to localization from a combination of a
3D map and a 2D LIDAR.

1) UKF-based localization: We use Unscented Kalman
filter (UKF) [22] for localization. The state vector xt is
defined as:

xt = (pt,vt, qt, b
gyro
t )

T
, (11)



(a) The route for acquiring 3D scans in a larger region.

(b) The mapping result. Colors indicate the heights of the points.

(c) 3D view of a part of the map.

Fig. 4. Result of mapping of a larger region.

where p is the position, v is the translational velocity, qt is
the orientation in the quaternion form; bgyrot is the bias for
the gyroscope. The prediction step of the UKF is described
as:

xt =
(
pt−1 + vt−1 ·Δt, qt−1 ·Δqt,vt−1, b

gyro
t−1

)T
, (12)

where Δt is the duration between t and t−1 and Δqt is the
rotation during Δt caused by the bias-compensated angular
velocity from the gyroscope, also in the quaternion form.

The correction step uses the measurement of the robot
pose, defined as:

z =
(
pobs
t , qobs

t

)T
. (13)

Fig. 5. Test route 1 for evaluating the localization accuracy.

The translation pobs
t and the rotation qobs

t part calculated by
matching the current 2D scan with the 3D map using the
NDT representation of the map. Note that the procedure for
the 3D-3D matching for mapping and that for the 3D-2D
matching for localization are the same with only difference
in the number of 3D points in the current input point cloud.
We use the result of the prediction step as an initial estimate
of the robot pose, and search a fixed range of voxels for the
matched voxel of each input 3D point. The range is specified
as a cubic set of voxels with the edge length being fifteen.
The uncertainty is calculated as the inverse of the information
matrix in eq (8).

2) Experiments:
a) Off-line experiments: We first evaluate the accuracy

of the proposed localization method. Since it is difficult to
obtain the ground truth for the robot pose, we used a 3D
LIDAR (HDL-32e by Velodyne) to take full 3D scans as the
robot moves, and assume its localization results as the true
values. In addition, for simulating a 2D LIDAR, we extract
only the horizontal scan out of 32 scans of the sensor and
use it for localization.

Fig. 5 indicates the first route used for evaluation, which is
the loop at the top-left part of the environment (see Fig. 4(a));
the route is almost flat. The lengths of the longer and the
shorter edge are approximately 130m and 75m, respectively.
We performed five experimental runs and calculated the
RMSE values for all of six degrees of freedom. We also
simulate various limitations in the range measurements (i.e.,
maximum measurable range); we see how accuracy changes
as the limitation changes.

Fig. 6 shows the RMSE error in the translational and
the rotational elements of the localization (i.e., the robot
pose estimation) for various maximum measurable ranges.
Table I summarizes the accuracy for two maximum ranges.
In this experiment, when the maximum measurable range
is equal to or larger than 30m, the proposed localization
method can provide a sufficient accuracy for autonomous
navigation. In the data for the 60m maximum range, the roll
and the pitch value happen to have larger errors than the
30m case; however, these values are not very important for
the robot moving on a road-like, almost flat surface and, at
the same time, the yaw accuracy, which is more important
for navigation, is improved for the 60m range case.

Fig. 7 indicates the second route used for evaluation, which
has a variation in the road height. The region around the



(a) Accuracy in the position elements.

(b) Accuracy in the orientation elements.

Fig. 6. Accuracy of the pose estimation for various limitations of range
measurement for test route 1.

TABLE I
ACCURACY IN THE LIMITATIONS OF 30m AND 60m IN THE RANGE

MEASUREMENTS FOR TEST ROUTE 1.

elements maximum range is 30m maximum range is 60m

x [m] 0.722 0.212
y [m] 0.499 0.121
z [m] 1.426 0.925

roll [deg] 0.997 4.254
pitch [deg] 1.364 2.754
yaw [deg] 3.783 1.027

first corner is lower than the other places on the route. Data
collection and analyses have been conducted similarly to the
first route case.

Fig. 8 shows the RMSE error in the translational and the
rotational elements of the localization (i.e., the robot pose
estimation) for various maximum measurable ranges. Table
II summarizes the accuracy for two maximum ranges. Since
the average distance to objects (i.e. buildings) are smaller
than in the route 1 case, the necessary measurable range
of LIDAR looks smaller and the overall accuracy is better.
Also in this experiment, extending the measurable range of
the LIDAR basically increases the accuracy.

b) On-line experiments: We performed on-line experi-
ments using the LMS151 as the 2D LIDAR. The processing
speed of one cycle including localization and robot control
is about 10fps, which is sufficiently fast for autonomous
navigation. Fig. 9(a) shows the trajectory when the robot
moved on the first two edges of the route in Fig. 5. Fig. 9(b)
shows a snapshot of localization; red points in the 3D map

Fig. 7. Test route 2 for evaluating the localization accuracy.

(a) Accuracy in the position elements.

(b) Accuracy in the orientation elements.

Fig. 8. Accuracy of the pose estimation for various limitations of range
measurement for test route 2.

and a white sphere indicate the data obtained by the current
2D scan and the estimated robot position, respectively.

V. CONCLUSIONS AND FUTURE WORK

This paper describes a large-scale 3D outdoor mapping
method and a 6D localization method. 3D mapping is re-
alized by combining an NDT-based ego-motion estimation
using 3D scans and a robust loop closure detection using
either GPS signals or a shape signature followed by verifica-

TABLE II
ACCURACY IN THE LIMITATIONS OF 30m AND 60m IN THE RANGE

MEASUREMENTS FOR TEST ROUTE 2.

elements maximum range is 30m maximum range is 60m

x [m] 0.110 0.082
y [m] 0.117 0.069
z [m] 0.861 0.816

roll [deg] 2.079 1.120
pitch [deg] 2.175 2.209
yaw [deg] 0.337 0.321



(a) The estimated trajectory (blue line) by the on-line localization.

(b) Snapshot of on-line localization. Red points: current 2D scan; white sphere:

estimated robot position.

Fig. 9. Result of on-line localization.

tion and relative pose estimation using NDT. We have shown
the method can generate a campus-wide 3D map reasonably
accurately.

The localization method is based on a novel idea of
matching a 3D map with 2D scans. Use of a 2D LIDAR on
a robot has advantages of a low-cost and a computational
efficiency. We tested the method in two locations in our
campus to compare the accuracy between a usual 3D-3D
matching-based method and ours. The comparison results
show that the proposed method has a sufficient accuracy for
autonomous navigation.

The generated map looks reasonably good qualitatively but
has not been evaluated quantitatively. Comparison with the
results with more accurate systems such as FARO Focus3D
and/or evaluation using publicly-available datasets such as
KITTI dataset would be preferable. Combining the current
geometric map with semantic information such as building
names and location categories will be necessary to com-
municate with or accepting commands from people, using
object recognition and categorization techniques. Using such
a semantically-enhanced map, we are planning to make a
robot call system which can guide people or carry items
autonomously with a human-friendly interface.
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