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Abstract

This paper proposes a motion planning method for a
mobile robot in the situation where there are both static
and moving obstacles. If the robot cannot communi-
cate with moving obstacles, it has to predict their future
movement in order to plan the safe and cfficient mo-
tion. Since such a prediction includes uncertainty, the
proposed method explicitly considers the uncertainty in
motion planning. We use a probabilistic model of the
uncertainty and select the motion which minimizes the
expected time of reaching the destination. We also uti-
lize the knowledge of possible paths of moving obsta-
cles, which is applicable to usual structured environ-
ments. Simulation results validate the effectiveness of
the method.

1 INTRODUCTION

Mobile robot motion planning in dynamic environ-
ments has recently been studied extensively [1]. In the
case where a robot cannot communicate with moving
obstacles, it is necessary for the robot to predict the
future motion of them. Most of past research can be
classified, in terms of the knowledge of the movement
of obstacles, into two categories. In one category, the
movement of obstacles is completely unknown, thus,
the reactive motion planning is only reasonable way for
a robot to cope with moving obstacles [2]; not the op-
timality of robot motion but the safety is an important
issue there. In the other category, the movement of ob-
stacles i1s completely known, thus, the optimal motion
can be generated by employing a planning in space-
time [3]. Tsubouchi and Arimoto [4] applied this idea
to the robot with a limited range of sensing; from the
sensed position and velocity of obstacles, the robot pre-
dicts their future movement by assuming that they will
continue to move at a constant velocity, and plans the
next best action. Such prediction and planning are
repeatedly performed.

In between these categories, several works consider
the uncertainty in obstacle motion. Inoue et al. [5]

proposed a method to predict the motion of an obstacle
and 1ts uncertainty from the history of its movement.
They considered only the range of uncertainty; that is,
the robot generates a plan which is safe regardless of
actual obstacle motion. This method may result in an
inefficient robot motion if the positional distribution of
the obstacle is not uniform within the range.

This paper considers the following two characteris-
tics of motion prediction:

e Prediction quality usually increases as time ad-
varnces.

e The probability that each motion actually occurs
within the possible range is not uniform in general.

Let us consider a simple example. Suppose you are
going to cross a street and a car is approaching you.
You have to decide when to begin crossing the street,
l.e., before or after the car passes. When the car is
far away, predicting when the car will pass in front of
you suffers from a large uncertainty because it is the
prediction of a far future, and because the observation
uncertainty is large for a far object. However, as time
advances, the situation will be more certain and, at
some time point, you will be able to make a decision
with confidence. Also, the time of the car passing will
usually be non-uniformly distributed around the most
likely predicted value.

In addition to the above characteristics, we consider
to use the knowledge of the environment; that is, in
usual structured environment, we can predict the ob-
stacle motion to some extent. They never move ran-
domly; each has its own start and goal points and the
path connecting them should be generated in some ra-
tional manner (e.g., by a minimum-length criterion).
For example, in a typical office environment, flow
of people 1s restricted by the displacements of walls,
doors, furniture and so on. We use the tangent graph
[6] to represent such a restriction.

The proposed planner first calculates possible paths
in the tangent graph generated only from given infor-
mation of static obstacles. We deal with the case where



the trajectories of moving obstacles and the desired
trajectory of a robot are restricted to the ones on the
possible paths. In this situation, we can enumerate
points on the paths where the robot and each moving
obstacle may meet. Then the planner calculates the
probabilistic distribution of the moving obstacle com-
ing to such a point; this distribution is used to estimate
the expectation of the time of the robot reaching the
destination. The best motion is then selected which
minimizes the expected time.

2 MODELING MOTION UNCER-
TAINTY ON A PATH

Modeling Velocity Uncertainty

This paper deals with the case where the path of a
moving obstacle is given as a sequence of segments on
a tangent graph. Thus we needs to model only the
velocity variation of the obstacle and to predict its 1-
D position along the path.

We assume the following on the movement of ob-
stacles: each moving obstacle has the possible range
of its velocity, represented as [Umin, Umaz]; 1t changes
the velocity at every time step AT; the velocity of a
time step is constant and randomly and independently
selected within the above range'.

Under these assumptions, we can predict the future
position of a moving obstacle as follows. Let zo and o2
be the current position and the variance of an obstacle
and vy be the velocity at the kth time step. Then the
position z; after ¢ steps is given by:

2
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Since every v follows the same but independent uni-
form distribution within the above velocity range, the
distribution of z; can be approximated by a normal dis-
tribution (by central limit theorem [7]). The variance

U?tep of the movement added by one step is calculated
as:
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where & = (Umax + Umin)/2 is the mean of the obstacle
velocity. The probability density function p(x;é) of
the obstacle being at x after moving for ¢ steps is then
given by
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IMore constraining knowledge could be used depending on
the actual environment and the problem settings.
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Fig. 1: Prediction of arrival time.

Predicting the Arrival Time of Moving Obstacle
at a Crossing

Movement of an obstacle affects that of the robot near
the crossings of their paths. Thus it is necessary to
calculate the distribution of the arrival time of the ob-
stacle at a crossing. Using the velocity uncertainty
model described above, the distribution is calculated
as follows (see Fig. 1).

In the figure, the vertical axis indicates the mov-
ing distance of the obstacle from the current position;
the horizontal axis indicates the time (or time step).
Derossing 18 the distance to a specific crossing on the
path. Since the positional distribution of the obstacle
at some time point is calculated by eq. (3), the proba-
bility P(#) of the obstacle reaching the crossing at the
tth time step can be approzimated by:

P(Z) = ap(Dcrossing; Z), (4)

where « 1s a normalization constant and is calculated
as 1/ 3. P(Derossing; 1). The resultant probability dis-
tribution is not symmetric; its mass center 1s a little
biased to the less-time side.

Modeling Sensing Uncertainty

Another source of uncertainty in prediction of the
movement of an obstacle 1s the sensing uncertainty.
We suppose a vision-based mobile robot, which uses
stereo vision to detect an obstacle and to measure its
position and velocity. We use the probabilistic uncer-
tainty model of stereo vision which we have previously
developed [8].

The model represents the positional uncertainty of
an obstacle due to vision uncertainty by a mnormal
distribution. We here describe how to predict the
positional uncertainty after the next time step. Let
N(po,02) be the predicted distribution of obstacle po-
sition « after the next step; this distribution 1s calcu-
lated from the current distribution and the predicted
motion uncertainty added by the next step. Let xgps
be the observation result obtained after the motion for



the next step. Assuming that the variance O'st of Z,ps
is constant regardless of the true value of z, 435 follows
N(po, 08 + 0%,) [8]. The information on z after the
observation is obtained by integrating the predicted
distribution N(po,o3) and the observation result. Let
N(pt1,0%) be the distribution after the integration. o?
is given by
2 U(%Ugbs

7= O-g + Ugbs . (5)
This value 1s always the same for any observation re-
sult. On the other hand, u; depends on the observa-
tion result and we cannot know it beforehand. We can,
however, calculate the distribution of p; the mean jui,,
and the variance o2 are given by [8]:

M1
Hu, = Ho, (6)
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We use this distribution to enumerate a set of possible
states after the next step.

Gradual Reduction of Prediction Uncertainty

As explained with an example in Sec. 1, the current
situation may become more certain as time advances.
Therefore, if the robot has several candidate paths to
the destination, it may be better to defer the decision
of path selection, instead of immediately committing to
one path. Fig. 2 shows the current probability distri-
bution of an obstacle arriving at a crossing and a set of
predicted probability distributions after one time step
passes and the new observation result is integrated?.
The set of distributions covers all possible situation
which is represented by the current distribution. Only
one of which, however, will actually occur. The vari-
ance of each distribution in the set is smaller than that
of the current one, that is, the situation will become
more certain. The reasons why this happens are: (1)
the distance to the crossing becomes smaller; (2) ob-
served data are statistically integrated to reduce the
uncertainty.

3 MOTION PLANNING FOR FIXED
PATH MOVING OBSTACLES

Planning the Next Motion

The robot basically follows a path on the tangent graph
to minimize the moving distance to the destination as
long as there is no influence from moving obstacles. If
the robot has to consider avoidance of collision with
them, the robot selects a certain number of nodes as
the candidates of an intermediate goal and enumerates

2Note that the velocity range of the obstacle is discretized
with some granularity for a computational purpose.
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Fig. 2: Reduction of prediction uncertainty. Note
that each predicted probability distribution is weighted
with its occurrence probability.

a set of candidate motions which does not conflict with
the candidate nodes (see Fig. 3). After each time step,
the robot observes obstacles, estimates their positional
uncertainty, and performs one-step look-ahead search
for the next motion. Once a node is known to be far
superior to the others, the commitment is made to the
node.
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Fig. 3: Generating candidate motions.

The detailed planning algorithm is as follows (see
Fig. 4). For each motion é(¢ = 1,...,N), the
robot first predicts the set of possible states {5;;|7 =
1,...,M} and their probability P;;, which are to be
obtained after the motion, as described in the previous
section. Then for each state S;;, the robot calculates
the expected time T,ij of reaching the destination when
selecting candidate node k (k = 1,...,L)> and selects
the best (minimum-time) candidate node k; as:

L.
ki; = arg min T . (8)

3The next subsection will explain how to calculate the ex-
pected time.
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Fig. 4: Selecting the next motion.

Then the expected time T; of reaching the destination
when taking candidate motion 7 is given by

M
=" PyT (9)
j=t1 ’

Finally the best motion ¢* is selected as:

. N
it = argml?TZ. (10)
1=

Calculating Expected Time to Destination

Collision Avoidance by Stopping The robot con-
troller combines the global planning using tangent
graphs with the local planning using a potential func-
tion. The attractive force comes from the next node
on the graph, while the repulsive forces come from dy-
namic and static obstacles. However this strategy may
sometimes result in a very inefficient behavior of the
robot; for example, an obstacle could push the robot
to deviate largely from the desired path. Therefore,
we set a safety distance L,,;. and controls the robot
so as not to enter within the distance L4, from any
obstacles. L,,¢. is determined such that if the distance
of the robot and an obstacle is larger than L.;., the
robot motion is not affected by the obstacle within the
above-mentioned control scheme.

Basically the robot moves at a constant speed on
the shortest path. If the path of the robot and that
of an obstacle intersect, and if the robot knows the
obstacle will come to the distance less than L.y, the
robot stops before the intersection point (crossing) and
waits for the obstacle to pass by?.

Calculating Waiting Time The period during
which the robot has to wait 1s calculated as follows.
Let us consider Fig. 5. The two paths intersect at P,
with angle §. The robot waits at point P whose dis-
tance to the path of the obstacle is L,,f.. Let t5 be the

4Note that the above combined motion control strategy is
still effectively used in case of an unanticipated movement of an
obstacle.

(b) Condition for the robot to start moving.

Fig. 5: Collision avoidance by stopping.

time at which the robot reaches 2. To calculate the
waiting period, we first calculate two distances, Dizfe
and Dgg}e. DiZfe indicates the distance of the obsta-
cle to the crossing P, such that the robot can pass the
crossing before the obstacle if the obstacle is further
than Dizfe at 19 (see Fig. 5(a)). Dgg}e is the dis-
tance from the crossing such that the robot can pass
the crossing after the obstacle if the obstacle is further
than Dgg}e at tp (see Fig. 5(b)). Assuming that the
obstacle and the robot moves at constant speed v, and

v, respectively, these two distances are given by:

. L v24v2—v,v,cos8 v
in safe r ) rUo o

= — — >, 11
safe sin 6 {\/ v2 +Ur} (11)

L v24v2—vv,cos8 v
pout — safe r ° rro 2L 12
safe sin 0 v2 vy (12)

If the obstacle is within the range [P, — Dizfe, P, +
D?Z}e] at {o, the robot has to wait for the obstacle exit-
ing from the range. From this condition, we can obtain
the following. (1) If the time of the obstacle arriving
at the crossing is within the range [to — Dgg}e/vo, to +
Dizfe/vo], the robot has to wait®. (2) In addition, for a
time of arrival ¢ within the range, the robot has to wait
for the duration of ¢t — (tg — Dgg}e/vo). (see Fig. 6);
this is explained as follows. If the obstacle arrives at
P, at t, we know that it was at the distance of v,(t—1¢)
to P, at time tg. Thus the robot has to wait while the
obstacle moves by the distance Dgg}e + v, (t — tp). Di-
viding this distance by v, leads to the above waiting

time.

5We assume again that the obstacle’s speed is constant v,
near the crossing.
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Expected Time to Destination From the above
result and the probability distribution P(%) of the ob-
stacle arriving at the crossing (see eq. (4)), we can
calculate the expected time of the robot reaching the
destination on a certain path. The expectation of the
extra time needed for waiting, Ty, ¢, 18 calculated by:

Towt = . PO —(ta— DU /v,)),  (13)
t€[tmin,tmax]

tnin = tO_D;)Z}e/UOa

tmae = to+ D /vo.

The expected time to the destination is then calculated
as the sum of T},4;; and the time needed in the case
where the robot encounters no obstacles.

4 SIMULATION

Realtime Simulation Environment

Fig. 7 shows our setup for the realtime simulation.
Simulator is a graphics simulator which controls the
movement of all objects in the environment. Planner
repeats the cycle of (1) receiving the sensed informa-
tion of moving obstacles from Simulator, (2) calculat-
ing an appropriate motion of the robot, and (3) send-
ing the motion command to Simulator. The interface
protocol between the two systems is designed to em-
ulate the one between Planner and our real robot so
that the planning algorithms developed in this simula-
tion environment can be used for the real robot with a
minimum modification.
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Fig. 7: Realtime simulation environment.

Simulation Result

Fig. 8 shows a simulation result. There are a static
obstacle and a moving obstacle in the environment
and the robot considers two routes, among which the
left one is shorter. The figure shows the movement of
the robot and the obstacle until the robot reached the
goal point. Since the left route is shorter, the robot
started toward the left route; as the situation became
more certain, the evaluation of the right route went
up, while that of the left one fell down. So the robot
gradually shifted its direction towards the right route
and, at time ¢ = 17, it committed to the right route
and followed it to the goal point. The parameters
used 1n this simulation are: obstacle velocity range
is [4.5 + 1.0][em/s]; the robot velocity is 7.5[em/s];
the variance of uncertainty in measuring distance is
6.25e — 7 - d* (d is the distance to the obstacle); the
length of the left and the right route are 317.0[em] and
332.0[em], respectively. The number of candidate mo-
tions 1s 5.
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Fig. 8: A simulation result.

Fig. 9 shows a set of predicted states (the distribu-
tion of the predicted time of the obstacle arriving at
the crossing) at time ¢t = 4 for the left (see Fig. 9(a))
and the right (see Fig. 9(b)) route, respectively. Al-
though the expected waiting time of the left route is
longer than that of the right route, since the left route
is shorter, the two routes are competing in terms of
time; thus, the robot selects at this time point to move
toward exactly the middle of the directions to both
routes.
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Fig. 9: Two sets of arrival time probabilities and the
time robot’s arrival at the waiting position.

5 CONCLUSIONS AND DISCUSSION

This paper have proposed a novel method of gener-
ating mobile robot motion in a dynamic environment
considering the motion uncertainty of moving obsta-
cles. Using the probabilistic model of the uncertainty
of motion itself and that of observation uncertainty,
we can model the gradual reduction of the uncertainty
in motion prediction, which we usually experience in
many situations. Based on this probabilistic model,
the method repeatedly selects the best motion in a
decision-theoretic manner, that is, by one-step look-
ahead search in a probabilistic search tree.

An immediate extension is to consider the path am-
biguity. At a junction of paths, an obstacle may take
any branch and this is also difficult for the robot to
know in advance. By applying a probabilistic method,
as used in this paper, to prediction of an obstacle’s
path, we will be able to estimate the distribution of
the time of the obstacle arriving at the branch and the
probability of taking each path at a time. Similarly
to the case of motion prediction, the situation (which
path to take) will be more certain as time advances.

Another important extension is to consider the plan-
ning cost. Currently, since planning is simple and very

fast, the planning time is negligible. However, when
the planning cost becomes higher due to, for example,
increase of the number of possible situations to exam-
ine, we would have to consider the tradeoff between
planning quality and planning cost [9]. This tradeoff
will be very important especially in a dynamic envi-
ronment because the time allowed for planning may be
very short; an interesting example would be the case
of an obstacle approaching the robot.
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